Innophore GmbH, 8010, Graz, Austria.
Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria.
Sci Rep. 2023 Jan 14;13(1):774. doi: 10.1038/s41598-023-27636-x.
Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC) compared with the same variant produced in CHO cells and an almost six-fold IC reduction compared with wild-type hACE2-Fc.
用一种可溶性的 ACE2 来治疗 COVID-19,这种 ACE2 可以在病毒颗粒进入宿主细胞之前与它们结合,这是一种很有前途的方法,然而,它需要进行优化和适应不断出现的病毒变异。这里提出的计算工作流程包括对多个刺突 RBD/hACE2 变体的刺突 RBD-hACE2 结合亲和力进行分子动力学模拟,以及一个新的卷积神经网络架构,该架构用于对体素化力场对进行操作,以实现有效的搜索空间减少。我们确定了 hACE2-Fc K31W 和多种突变变体是高亲和力的候选物,并通过病毒中和试验在体外进行了验证。我们在计算机上评估了这些 ACE2 变体与奥密克戎 BA.3、奥密克戎 BA.4/BA.5 和奥密克戎 BA.2.75 的 RBD 的结合亲和力。此外,在潜在大规模生产的表达宿主烟草 Nicotiana benthamiana 中产生的候选物与在 CHO 细胞中产生的相同变体相比,半最大抑制浓度(IC)降低了 4.6 倍,与野生型 hACE2-Fc 相比,IC 降低了近 6 倍。