Suppr超能文献

使用机器学习方法预测帕金森病患者的认知衰退

Prediction of Cognitive Degeneration in Parkinson's Disease Patients Using a Machine Learning Method.

作者信息

Chen Pei-Hao, Hou Ting-Yi, Cheng Fang-Yu, Shaw Jin-Siang

机构信息

Department of Neurology, MacKay Memorial Hospital, Taipei 104217, Taiwan.

Institute of Long-Term Care, Mackay Medical College, New Taipei City 252, Taiwan.

出版信息

Brain Sci. 2022 Aug 7;12(8):1048. doi: 10.3390/brainsci12081048.

Abstract

This study developed a predictive model for cognitive degeneration in patients with Parkinson's disease (PD) using a machine learning method. The clinical data, plasma biomarkers, and neuropsychological test results of patients with PD were collected and utilized as model predictors. Machine learning methods comprising support vector machines (SVMs) and principal component analysis (PCA) were applied to obtain a cognitive classification model. Using 32 comprehensive predictive parameters, the PCA-SVM classifier reached 92.3% accuracy and 0.929 area under the receiver operating characteristic curve (AUC). Furthermore, the accuracy could be increased to 100% and the AUC to 1.0 in a PCA-SVM model using only 13 carefully chosen features.

摘要

本研究使用机器学习方法为帕金森病(PD)患者的认知衰退建立了一个预测模型。收集了PD患者的临床数据、血浆生物标志物和神经心理测试结果,并将其用作模型预测指标。应用包括支持向量机(SVM)和主成分分析(PCA)在内的机器学习方法来获得认知分类模型。使用32个综合预测参数时,PCA-SVM分类器的准确率达到92.3%,受试者工作特征曲线(AUC)下面积为0.929。此外,在仅使用13个精心挑选特征的PCA-SVM模型中,准确率可提高到100%,AUC提高到1.0。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5036/9405552/1d8d0e8fa054/brainsci-12-01048-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验