Chen Pei-Hao, Hou Ting-Yi, Cheng Fang-Yu, Shaw Jin-Siang
Department of Neurology, MacKay Memorial Hospital, Taipei 104217, Taiwan.
Institute of Long-Term Care, Mackay Medical College, New Taipei City 252, Taiwan.
Brain Sci. 2022 Aug 7;12(8):1048. doi: 10.3390/brainsci12081048.
This study developed a predictive model for cognitive degeneration in patients with Parkinson's disease (PD) using a machine learning method. The clinical data, plasma biomarkers, and neuropsychological test results of patients with PD were collected and utilized as model predictors. Machine learning methods comprising support vector machines (SVMs) and principal component analysis (PCA) were applied to obtain a cognitive classification model. Using 32 comprehensive predictive parameters, the PCA-SVM classifier reached 92.3% accuracy and 0.929 area under the receiver operating characteristic curve (AUC). Furthermore, the accuracy could be increased to 100% and the AUC to 1.0 in a PCA-SVM model using only 13 carefully chosen features.
本研究使用机器学习方法为帕金森病(PD)患者的认知衰退建立了一个预测模型。收集了PD患者的临床数据、血浆生物标志物和神经心理测试结果,并将其用作模型预测指标。应用包括支持向量机(SVM)和主成分分析(PCA)在内的机器学习方法来获得认知分类模型。使用32个综合预测参数时,PCA-SVM分类器的准确率达到92.3%,受试者工作特征曲线(AUC)下面积为0.929。此外,在仅使用13个精心挑选特征的PCA-SVM模型中,准确率可提高到100%,AUC提高到1.0。