Suppr超能文献

分析转运蛋白敲除菌株文库以确定抗生素的转运途径

Analysis of a Library of Transporter Knockout Strains to Identify Transport Pathways of Antibiotics.

作者信息

Munro Lachlan Jake, Kell Douglas B

机构信息

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.

出版信息

Antibiotics (Basel). 2022 Aug 19;11(8):1129. doi: 10.3390/antibiotics11081129.

Abstract

Antibiotic resistance is a major global healthcare issue. Antibiotic compounds cross the bacterial cell membrane via membrane transporters, and a major mechanism of antibiotic resistance is through modification of the membrane transporters to increase the efflux or reduce the influx of antibiotics. Targeting these transporters is a potential avenue to combat antibiotic resistance. In this study, we used an automated screening pipeline to evaluate the growth of a library of 447 transporter knockout strains exposed to sub-inhibitory concentrations of 18 diverse antimicrobials. We found numerous knockout strains that showed more resistant or sensitive phenotypes to specific antimicrobials, suggestive of transport pathways. We highlight several specific drug-transporter interactions that we identified and provide the full dataset, which will be a useful resource in further research on antimicrobial transport pathways. Overall, we determined that transporters are involved in modulating the efficacy of almost all the antimicrobial compounds tested and can, thus, play a major role in the development of antimicrobial resistance.

摘要

抗生素耐药性是一个重大的全球医疗保健问题。抗生素化合物通过膜转运蛋白穿过细菌细胞膜,而抗生素耐药性的一个主要机制是通过修饰膜转运蛋白来增加抗生素的外排或减少其流入。针对这些转运蛋白是对抗抗生素耐药性的一个潜在途径。在本研究中,我们使用了一个自动化筛选流程来评估447种转运蛋白敲除菌株文库在暴露于18种不同抗菌药物的亚抑制浓度下的生长情况。我们发现了许多对特定抗菌药物表现出更强耐药或敏感表型的敲除菌株,这暗示了转运途径。我们重点介绍了我们鉴定出的几种特定的药物 - 转运蛋白相互作用,并提供了完整的数据集,这将成为进一步研究抗菌药物转运途径的有用资源。总体而言,我们确定转运蛋白参与调节几乎所有测试抗菌化合物的疗效,因此在抗生素耐药性的发展中可能起主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a7/9405208/adf2c1d4fb86/antibiotics-11-01129-g001.jpg

相似文献

1
Analysis of a Library of Transporter Knockout Strains to Identify Transport Pathways of Antibiotics.
Antibiotics (Basel). 2022 Aug 19;11(8):1129. doi: 10.3390/antibiotics11081129.
2
Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis.
Environ Int. 2018 Nov;120:421-430. doi: 10.1016/j.envint.2018.07.046. Epub 2018 Aug 18.
4
Efflux drug transporters at the forefront of antimicrobial resistance.
Eur Biophys J. 2017 Oct;46(7):647-653. doi: 10.1007/s00249-017-1238-2. Epub 2017 Jul 14.
5
Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli.
Microbiol Spectr. 2021 Dec 22;9(3):e0028921. doi: 10.1128/Spectrum.00289-21. Epub 2021 Nov 10.
7
Natural extracts stimulate membrane-associated mechanisms of resistance in Gram-negative bacteria.
Lett Appl Microbiol. 2014 May;58(5):472-7. doi: 10.1111/lam.12216. Epub 2014 Feb 6.
8
The prevalence and mechanism of triclosan resistance in Escherichia coli isolated from urine samples in Wenzhou, China.
Antimicrob Resist Infect Control. 2020 Oct 2;9(1):161. doi: 10.1186/s13756-020-00823-5.
9
Antimicrobial resistance of isolates from cattle in Eastern Algeria.
Vet World. 2019 Aug;12(8):1195-1203. doi: 10.14202/vetworld.2019.1195-1203. Epub 2019 Aug 7.

引用本文的文献

1
Carrier-mediated transport as a common route of antibiotic ingress into bacteria.
mBio. 2025 Aug 13;16(8):e0161625. doi: 10.1128/mbio.01616-25. Epub 2025 Jul 9.
2
PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in .
mSystems. 2024 Oct 22;9(10):e0096424. doi: 10.1128/msystems.00964-24. Epub 2024 Sep 30.

本文引用的文献

1
Identification and Engineering of Transporters for Efficient Melatonin Production in .
Front Microbiol. 2022 Jun 20;13:880847. doi: 10.3389/fmicb.2022.880847. eCollection 2022.
2
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.
Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0. Epub 2022 Jan 19.
3
Function and Inhibitory Mechanisms of Multidrug Efflux Pumps.
Front Microbiol. 2021 Dec 3;12:737288. doi: 10.3389/fmicb.2021.737288. eCollection 2021.
4
Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput.
mBio. 2021 Dec 21;12(6):e0322121. doi: 10.1128/mbio.03221-21. Epub 2021 Dec 14.
6
Membrane Transporters Involved in the Antimicrobial Activities of Pyrithione in .
Molecules. 2021 Sep 26;26(19):5826. doi: 10.3390/molecules26195826.
7
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
Trends in FDA drug approvals over last 2 decades: An observational study.
J Family Med Prim Care. 2020 Jan 28;9(1):105-114. doi: 10.4103/jfmpc.jfmpc_578_19. eCollection 2020 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验