Suppr超能文献

用于疾病检测的复值神经网络与实值神经网络之间的公平性能比较

A Fair Performance Comparison between Complex-Valued and Real-Valued Neural Networks for Disease Detection.

作者信息

Jojoa Mario, Garcia-Zapirain Begonya, Percybrooks Winston

机构信息

Department of Electrical and Electronics Engineering, University of North, Barranquilla 080002, Colombia.

Department of Computer Science and Engineering, University of Deusto, 48007 Bilbao, Spain.

出版信息

Diagnostics (Basel). 2022 Aug 4;12(8):1893. doi: 10.3390/diagnostics12081893.

Abstract

Our aim is to contribute to the classification of anomalous patterns in biosignals using this novel approach. We specifically focus on melanoma and heart murmurs. We use a comparative study of two convolution networks in the Complex and Real numerical domains. The idea is to obtain a powerful approach for building portable systems for early disease detection. Two similar algorithmic structures were chosen so that there is no bias determined by the number of parameters to train. Three clinical data sets, ISIC2017, PH2, and Pascal, were used to carry out the experiments. Mean comparison hypothesis tests were performed to ensure statistical objectivity in the conclusions. In all cases, complex-valued networks presented a superior performance for the Precision, Recall, F1 Score, Accuracy, and Specificity metrics in the detection of associated anomalies. The best complex number-based classifier obtained in the Receiving Operating Characteristic (ROC) space presents a Euclidean distance of 0.26127 with respect to the ideal classifier, as opposed to the best real number-based classifier, whose Euclidean distance to the ideal is 0.36022 for the same task of melanoma detection. The 27.46% superiority in this metric, as in the others reported in this work, suggests that complex-valued networks have a greater ability to extract features for more efficient discrimination in the dataset.

摘要

我们的目标是使用这种新颖的方法为生物信号中的异常模式分类做出贡献。我们特别关注黑色素瘤和心脏杂音。我们对复数域和实数域中的两个卷积网络进行了比较研究。目的是获得一种强大的方法来构建用于早期疾病检测的便携式系统。选择了两个相似的算法结构,以便不存在由要训练的参数数量所决定的偏差。使用了三个临床数据集,即ISIC2017、PH2和Pascal来进行实验。进行了均值比较假设检验以确保结论中的统计客观性。在所有情况下,复数值网络在检测相关异常时,在精确率、召回率、F1分数、准确率和特异性指标方面表现出卓越的性能。在接收操作特征(ROC)空间中获得的最佳基于复数的分类器相对于理想分类器的欧几里得距离为0.26127,而对于相同的黑色素瘤检测任务,最佳基于实数的分类器到理想分类器的欧几里得距离为0.36022。与本工作中报告的其他指标一样,该指标中27.46%的优势表明复数值网络具有更强的能力来提取特征,以便在数据集中进行更有效的区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af49/9406326/bc18be960395/diagnostics-12-01893-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验