Souaidi Meryem, El Ansari Mohamed
LABSIV, Computer Science, Faculty of Sciences, University Ibn Zohr, Agadir 80000, Morocco.
Informatics and Applications Laboratory, Computer Science Department, Faculty of Sciences, University of Moulay Ismail, Meknès 50070, Morocco.
Diagnostics (Basel). 2022 Aug 22;12(8):2030. doi: 10.3390/diagnostics12082030.
The trade-off between speed and precision is a key step in the detection of small polyps in wireless capsule endoscopy (WCE) images. In this paper, we propose a hybrid network of an inception v4 architecture-based single-shot multibox detector (Hyb-SSDNet) to detect small polyp regions in both WCE and colonoscopy frames. Medical privacy concerns are considered the main barriers to WCE image acquisition. To satisfy the object detection requirements, we enlarged the training datasets and investigated deep transfer learning techniques. The Hyb-SSDNet framework adopts inception blocks to alleviate the inherent limitations of the convolution operation to incorporate contextual features and semantic information into deep networks. It consists of four main components: (a) multi-scale encoding of small polyp regions, (b) using the inception v4 backbone to enhance more contextual features in shallow and middle layers, and (c) concatenating weighted features of mid-level feature maps, giving them more importance to highly extract semantic information. Then, the feature map fusion is delivered to the next layer, followed by some downsampling blocks to generate new pyramidal layers. Finally, the feature maps are fed to multibox detectors, consistent with the SSD process-based VGG16 network. The Hyb-SSDNet achieved a 93.29% mean average precision (mAP) and a testing speed of 44.5 FPS on the WCE dataset. This work proves that deep learning has the potential to develop future research in polyp detection and classification tasks.
速度与精度之间的权衡是无线胶囊内窥镜(WCE)图像中小息肉检测的关键步骤。在本文中,我们提出了一种基于Inception v4架构的单发多框检测器(Hyb-SSDNet)的混合网络,用于检测WCE和结肠镜检查帧中的小息肉区域。医疗隐私问题被认为是WCE图像采集的主要障碍。为了满足目标检测要求,我们扩大了训练数据集并研究了深度迁移学习技术。Hyb-SSDNet框架采用Inception模块来缓解卷积运算的固有局限性,以便将上下文特征和语义信息融入深度网络。它由四个主要部分组成:(a)小息肉区域的多尺度编码;(b)使用Inception v4主干在浅层和中层增强更多上下文特征;(c)连接中级特征图的加权特征,赋予它们更大的权重以高度提取语义信息。然后,将特征图融合传递到下一层,接着是一些下采样模块以生成新的金字塔层。最后,将特征图输入到多框检测器中,这与基于SSD流程的VGG16网络一致。Hyb-SSDNet在WCE数据集上实现了93.29%的平均精度均值(mAP)和44.5帧每秒的测试速度。这项工作证明了深度学习在息肉检测和分类任务的未来研究中具有发展潜力。