Dijkhuis Talko B, Blaauw Frank J
Department of Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
Institute of Communication and ICT, Hanze University of Applied Science, Zernikeplein 11, 9747 AS Groningen, The Netherlands.
Entropy (Basel). 2022 Jul 31;24(8):1060. doi: 10.3390/e24081060.
Although causal inference has shown great value in estimating effect sizes in, for instance, physics, medical studies, and economics, it is rarely used in sports science. Targeted Maximum Likelihood Estimation (TMLE) is a modern method for performing causal inference. TMLE is forgiving in the misspecification of the causal model and improves the estimation of effect sizes using machine-learning methods. We demonstrate the advantage of TMLE in sports science by comparing the calculated effect size with a Generalized Linear Model (GLM). In this study, we introduce TMLE and provide a roadmap for making causal inference and apply the roadmap along with the methods mentioned above in a simulation study and case study investigating the influence of substitutions on the physical performance of the entire soccer team (i.e., the effect size of substitutions on the total physical performance). We construct a causal model, a misspecified causal model, a simulation dataset, and an observed tracking dataset of individual players from 302 elite soccer matches. The simulation dataset results show that TMLE outperforms GLM in estimating the effect size of the substitutions on the total physical performance. Furthermore, TMLE is most robust against model misspecification in both the simulation and the tracking dataset. However, independent of the method used in the tracking dataset, it was found that substitutes increase the physical performance of the entire soccer team.
尽管因果推断在估计例如物理学、医学研究和经济学中的效应大小时已显示出巨大价值,但它在体育科学中很少被使用。靶向最大似然估计(TMLE)是一种用于进行因果推断的现代方法。TMLE对因果模型的错误设定具有宽容性,并使用机器学习方法改进效应大小的估计。我们通过将计算出的效应大小与广义线性模型(GLM)进行比较,展示了TMLE在体育科学中的优势。在本研究中,我们介绍了TMLE,并提供了进行因果推断的路线图,并在一项模拟研究和案例研究中应用该路线图以及上述方法,该案例研究调查了换人对整个足球队体能表现的影响(即换人对总体能表现的效应大小)。我们构建了一个因果模型、一个错误设定的因果模型、一个模拟数据集以及来自302场精英足球比赛的单个球员的观察跟踪数据集。模拟数据集结果表明,在估计换人对总体能表现的效应大小时,TMLE优于GLM。此外,在模拟和跟踪数据集中,TMLE对模型错误设定最为稳健。然而,无论跟踪数据集中使用何种方法,都发现换人会提高整个足球队的体能表现。