Suppr超能文献

语义网络中的社区检测:一种多视图方法。

Community Detection in Semantic Networks: A Multi-View Approach.

作者信息

Yang Hailu, Liu Qian, Zhang Jin, Ding Xiaoyu, Chen Chen, Wang Lili

机构信息

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150001, China.

School of Automatic Control Engineering, Harbin Institute of Petroleum, Harbin 150028, China.

出版信息

Entropy (Basel). 2022 Aug 17;24(8):1141. doi: 10.3390/e24081141.

Abstract

The semantic social network is a complex system composed of nodes, links, and documents. Traditional semantic social network community detection algorithms only analyze network data from a single view, and there is no effective representation of semantic features at diverse levels of granularity. This paper proposes a multi-view integration method for community detection in semantic social network. We develop a data feature matrix based on node similarity and extract semantic features from the views of word frequency, keyword, and topic, respectively. To maximize the mutual information of each view, we use the robustness of L21-norm and F-norm to construct an adaptive loss function. On this foundation, we construct an optimization expression to generate the unified graph matrix and output the community structure with multiple views. Experiments on real social networks and benchmark datasets reveal that in semantic information analysis, multi-view is considerably better than single-view, and the performance of multi-view community detection outperforms traditional methods and multi-view clustering algorithms.

摘要

语义社交网络是一个由节点、链接和文档组成的复杂系统。传统的语义社交网络社区检测算法仅从单一视角分析网络数据,且不存在对不同粒度层次语义特征的有效表示。本文提出了一种用于语义社交网络社区检测的多视角集成方法。我们基于节点相似度开发了一个数据特征矩阵,并分别从词频、关键词和主题视角提取语义特征。为了最大化每个视角的互信息,我们利用L21范数和F范数的鲁棒性来构建一个自适应损失函数。在此基础上,我们构建一个优化表达式以生成统一的图矩阵并输出多视角的社区结构。在真实社交网络和基准数据集上的实验表明,在语义信息分析中,多视角比单视角有显著优势,且多视角社区检测的性能优于传统方法和多视角聚类算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0998/9407108/0e2218bb76ac/entropy-24-01141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验