Suppr超能文献

基于多重分形小波首曲线的正常和病态婴儿哭声信号在倒谱域的非线性统计分析

Nonlinear Statistical Analysis of Normal and Pathological Infant Cry Signals in Cepstrum Domain by Multifractal Wavelet Leaders.

作者信息

Lahmiri Salim, Tadj Chakib, Gargour Christian

机构信息

Department of Supply Chain and Business Technology Management, John Molson School of Business, Concordia University, Montreal, QC H3G 1M8, Canada.

Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada.

出版信息

Entropy (Basel). 2022 Aug 22;24(8):1166. doi: 10.3390/e24081166.

Abstract

Multifractal behavior in the cepstrum representation of healthy and unhealthy infant cry signals is examined by means of wavelet leaders and compared using the Student -test. The empirical results show that both expiration and inspiration signals exhibit clear evidence of multifractal properties under healthy and unhealthy conditions. In addition, expiration and inspiration signals exhibit more complexity under healthy conditions than under unhealthy conditions. Furthermore, distributions of multifractal characteristics are different across healthy and unhealthy conditions. Hence, this study improves the understanding of infant crying by providing a complete description of its intrinsic dynamics to better evaluate its health status.

摘要

通过小波首曲线检验健康和不健康婴儿哭声信号的倒谱表示中的多重分形行为,并使用学生检验进行比较。实证结果表明,在健康和不健康条件下,呼气和吸气信号均表现出明显的多重分形特性证据。此外,呼气和吸气信号在健康条件下比在不健康条件下表现出更高的复杂性。此外,健康和不健康条件下多重分形特征的分布有所不同。因此,本研究通过提供对婴儿哭声内在动力学的完整描述,更好地评估其健康状况,从而增进了对婴儿哭声的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a0/9407617/b69e8f6d6607/entropy-24-01166-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验