Suppr超能文献

在基于深度学习的新生儿哭声诊断系统中使用CCA融合倒谱特征来检测多种病症

Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns.

作者信息

Khalilzad Zahra, Tadj Chakib

机构信息

Department of Electrical Engineering, École de Technologie Supérieur, Université du Québec, Montreal, QC H3C 1K3, Canada.

出版信息

Diagnostics (Basel). 2023 Feb 24;13(5):879. doi: 10.3390/diagnostics13050879.

Abstract

Crying is one of the means of communication for a newborn. Newborn cry signals convey precious information about the newborn's health condition and their emotions. In this study, cry signals of healthy and pathologic newborns were analyzed for the purpose of developing an automatic, non-invasive, and comprehensive Newborn Cry Diagnostic System (NCDS) that identifies pathologic newborns from healthy infants. For this purpose, Mel-frequency Cepstral Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) were extracted as features. These feature sets were also combined and fused through Canonical Correlation Analysis (CCA), which provides a novel manipulation of the features that have not yet been explored in the literature on NCDS designs, to the best of our knowledge. All the mentioned feature sets were fed to the Support Vector Machine (SVM) and Long Short-term Memory (LSTM). Furthermore, two Hyperparameter optimization methods, Bayesian and grid search, were examined to enhance the system's performance. The performance of our proposed NCDS was evaluated with two different datasets of inspiratory and expiratory cries. The CCA fusion feature set using the LSTM classifier accomplished the best F-score in the study, with 99.86% for the inspiratory cry dataset. The best F-score regarding the expiratory cry dataset, 99.44%, belonged to the GFCC feature set employing the LSTM classifier. These experiments suggest the high potential and value of using the newborn cry signals in the detection of pathologies. The framework proposed in this study can be implemented as an early diagnostic tool for clinical studies and help in the identification of pathologic newborns.

摘要

哭泣是新生儿的一种交流方式。新生儿哭声信号传达了有关新生儿健康状况和情绪的宝贵信息。在本研究中,对健康和患病新生儿的哭声信号进行了分析,目的是开发一种自动、无创且全面的新生儿哭声诊断系统(NCDS),以从健康婴儿中识别出患病新生儿。为此,提取了梅尔频率倒谱系数(MFCC)和伽马通频率倒谱系数(GFCC)作为特征。据我们所知,这些特征集还通过典型相关分析(CCA)进行了组合和融合,这提供了一种在NCDS设计文献中尚未探索过的对特征的新颖处理方法。所有上述特征集都被输入到支持向量机(SVM)和长短期记忆网络(LSTM)中。此外,还研究了两种超参数优化方法,即贝叶斯方法和网格搜索法,以提高系统性能。我们提出的NCDS的性能通过吸气和呼气哭声的两个不同数据集进行了评估。使用LSTM分类器的CCA融合特征集在研究中取得了最佳F分数,吸气哭声数据集的F分数为99.86%。呼气哭声数据集的最佳F分数为99.44%,属于采用LSTM分类器的GFCC特征集。这些实验表明,在检测疾病方面使用新生儿哭声信号具有很高的潜力和价值。本研究中提出的框架可以作为临床研究的早期诊断工具来实施,并有助于识别患病新生儿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e60/10000938/3b68f06aaf3f/diagnostics-13-00879-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验