Suppr超能文献

基于多层感知器的利用患者基线信息和心率变异性的实时透析中低血压预测。

Multilayer Perceptron-Based Real-Time Intradialytic Hypotension Prediction Using Patient Baseline Information and Heart-Rate Variation.

机构信息

Daegu-Gyeongbuk Research Center, Electronics and Telecommunications Research Institute, Daegu 42994, Korea.

Division of Nephrology, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea.

出版信息

Int J Environ Res Public Health. 2022 Aug 20;19(16):10373. doi: 10.3390/ijerph191610373.

Abstract

Intradialytic hypotension (IDH) is a common side effect that occurs during hemodialysis and poses a great risk for dialysis patients. Many studies have been conducted so far to predict IDH, but most of these could not be applied in real-time because they used only underlying patient information or static patient disease information. In this study, we propose a multilayer perceptron (MP)-based IDH prediction model using heart rate (HR) information corresponding to time-series information and static data of patients. This study aimed to validate whether HR differences and HR slope information affect real-time IDH prediction in patients undergoing hemodialysis. Clinical data were collected from 80 hemodialysis patients from 9 September to 17 October 2020, in the artificial kidney room at Yeungnam University Medical Center (YUMC), Daegu, South Korea. The patients typically underwent hemodialysis 12 times during this period, 1 to 2 h per session. Therefore, the HR difference and HR slope information within up to 1 h before IDH occurrence were used as time-series input data for the MP model. Among the MP models using the number and data length of different hidden layers, the model using 60 min of data before the occurrence of two layers and IDH showed maximum performance, with an accuracy of 81.5%, a true positive rate of 73.8%, and positive predictive value of 87.3%. This study aimed to predict IDH in real-time by continuously supplying HR information to MP models along with static data such as age, diabetes, hypertension, and ultrafiltration. The current MP model was implemented using relatively limited parameters; however, its performance may be further improved by adding additional parameters in the future, further enabling real-time IDH prediction to play a supporting role for medical staff.

摘要

透析中低血压(IDH)是血液透析过程中常见的副作用,对透析患者构成极大风险。迄今为止,已经进行了许多研究来预测 IDH,但由于这些研究仅使用基础患者信息或静态患者疾病信息,大多数研究无法实时应用。在这项研究中,我们提出了一种基于多层感知器(MP)的 IDH 预测模型,该模型使用与时间序列信息和患者静态数据相对应的心率(HR)信息。本研究旨在验证 HR 差异和 HR 斜率信息是否会影响接受血液透析的患者的实时 IDH 预测。临床数据是从 2020 年 9 月 9 日至 10 月 17 日在韩国大邱岭南大学医学中心(YUMC)人工肾脏室收集的 80 名血液透析患者。在此期间,患者通常进行 12 次血液透析,每次 1 至 2 小时。因此,将 IDH 发生前最多 1 小时内的 HR 差异和 HR 斜率信息用作 MP 模型的时间序列输入数据。在使用不同隐藏层的数量和数据长度的 MP 模型中,使用两层和 IDH 发生前 60 分钟的数据的模型表现最佳,准确率为 81.5%,真阳性率为 73.8%,阳性预测值为 87.3%。本研究旨在通过连续向 MP 模型提供 HR 信息以及年龄、糖尿病、高血压和超滤等静态数据,实时预测 IDH。当前的 MP 模型使用相对有限的参数实现;然而,通过在未来添加其他参数,其性能可能会进一步提高,从而使实时 IDH 预测能够更好地为医务人员提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f25/9408052/10070dbe524f/ijerph-19-10373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验