Kumari Ranjita, Anand Pradeep Kumar, Shin Jitae
Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea.
Clinical Research Group, Samsung Healthcare, Gangdong-gu, Seoul 05340, Republic of Korea.
Diagnostics (Basel). 2023 Jul 27;13(15):2514. doi: 10.3390/diagnostics13152514.
Despite tremendous developments in continuous blood glucose measurement (CBGM) sensors, they are still not accurate for all patients with diabetes. As glucose concentration in the blood is <1% of the total blood volume, it is challenging to accurately measure glucose levels in the interstitial fluid using CBGM sensors due to within-patient and between-patient variations. To address this issue, we developed a novel data-driven approach to accurately predict CBGM values using personalized calibration and machine learning. First, we scientifically divided measured blood glucose into smaller groups, namely, hypoglycemia (<80 mg/dL), nondiabetic (81-115 mg/dL), prediabetes (116-150 mg/dL), diabetes (151-181 mg/dL), severe diabetes (181-250 mg/dL), and critical diabetes (>250 mg/dL). Second, we separately trained each group using different machine learning models based on patients' personalized parameters, such as physical activity, posture, heart rate, breath rate, skin temperature, and food intake. Lastly, we used multilayer perceptron (MLP) for the D1NAMO dataset (training to test ratio: 70:30) and grid search for hyperparameter optimization to predict accurate blood glucose concentrations. We successfully applied our proposed approach in nine patients with type 1 diabetes and observed that the mean absolute relative difference (MARD) decreased from 17.8% to 8.3%.
尽管连续血糖监测(CBGM)传感器取得了巨大进展,但它们对所有糖尿病患者来说仍不够精确。由于血液中的葡萄糖浓度占全血体积的比例不到1%,受患者个体差异和患者之间差异的影响,使用CBGM传感器准确测量组织液中的葡萄糖水平具有挑战性。为了解决这个问题,我们开发了一种新颖的数据驱动方法,通过个性化校准和机器学习来准确预测CBGM值。首先,我们科学地将测量的血糖分为更小的组,即低血糖(<80mg/dL)、非糖尿病(81-115mg/dL)、糖尿病前期(116-150mg/dL)、糖尿病(151-181mg/dL)、重度糖尿病(181-250mg/dL)和严重糖尿病(>250mg/dL)。其次,我们根据患者的个性化参数,如身体活动、姿势、心率、呼吸频率、皮肤温度和食物摄入量,使用不同的机器学习模型对每个组进行单独训练。最后,我们对D1NAMO数据集使用多层感知器(MLP)(训练与测试比例:70:30)并通过网格搜索进行超参数优化,以预测准确的血糖浓度。我们成功地将我们提出的方法应用于9名1型糖尿病患者,并观察到平均绝对相对差异(MARD)从17.8%降至8.3%。