National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2112703118.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in β-propiolactone-inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的刺突蛋白介导膜融合,从而允许病毒基因组进入宿主细胞。为了了解其详细的进入机制并开发特定的进入抑制剂,SARS-CoV-2 刺突蛋白在不同状态下的原位结构信息是迫切需要的。在这里,我们通过使用冷冻电镜断层扫描,观察到β-丙内酯失活的 SARS-CoV-2 病毒粒子中的预融合和融合后刺突,并以纳米分辨率解决了融合后刺突的原位结构。与之前的报告相比,六螺旋束融合核心、糖基化位点和跨膜域的位置都得到了清晰的解析。我们观察到病毒膜上刺突的寡聚化模式,这可能表明了融合孔形成的机制。