Zhang Wei, Li Heng, Zou Yongchao, Zhao Pengpeng, Li Zeren
Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
Micromachines (Basel). 2022 Jul 28;13(8):1189. doi: 10.3390/mi13081189.
This paper presents the design, simulation, fabrication, assembly, and testing of a miniature thermo-pneumatic optofluidic lens. The device comprises two separate zones for air heating and fluid pressing on a flexible membrane. A buried three-dimensional spiral microchannel connects the two zones without pumps or valves. The three-dimensional microfluidic structure is realized using a high-resolution three-dimensional printing technique. Multi-physics finite element simulations are introduced to assess the optimized air chamber design and the low-temperature gradient of the optical liquid. The tunable lens can be operated using a direct-current power supply. The temperature change with time is measured using an infrared thermal imager. The focal length ranges from 5 to 23 mm under a maximum voltage of 6 V. Because of the small size and robust actuation scheme, the device can potentially be integrated into miniature micro-optics devices for the fine-tuning of focal lengths.
本文介绍了一种微型热气动光流体透镜的设计、仿真、制造、组装和测试。该装置包括两个独立区域,用于在柔性膜上进行空气加热和流体挤压。一条埋入式三维螺旋微通道在无需泵或阀的情况下连接这两个区域。三维微流体结构通过高分辨率三维打印技术实现。引入多物理场有限元模拟来评估优化后的气室设计以及光学液体的低温梯度。可调谐透镜可使用直流电源进行操作。使用红外热成像仪测量温度随时间的变化。在最大电压6 V下,焦距范围为5至23毫米。由于尺寸小且驱动方案稳健,该装置有可能集成到微型微光学器件中,用于焦距的微调。