Suppr超能文献

利用 L. 球磨合成生物炭-氧化锌纳米复合材料的生物学应用

Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using L.

机构信息

Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.

Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China.

出版信息

Molecules. 2022 Aug 22;27(16):5333. doi: 10.3390/molecules27165333.

Abstract

Nanotechnology is one of the vital and quickly developing areas and has several uses in various commercial zones. Among the various types of metal oxide-based nanoparticles, zinc oxide nanoparticles (ZnO NPs) are frequently used because of their effective properties. The ZnO nanocomposites are risk-free and biodegradable biopolymers, and they are widely being applied in the biomedical and therapeutics fields. In the current study, the biochar-zinc oxide (MB-ZnO) nanocomposites were prepared using a solvent-free ball-milling technique. The prepared MB-ZnO nanocomposites were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) , X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) spectroscopy. The MB-ZnO particles were measured as 43 nm via the X-ray line broadening technique by applying the Scherrer equation at the highest peak of 36.36°. The FTIR spectroscope results confirmed MB-ZnO's formation. The band gap energy gap values of the MB-ZnO nanocomposites were calculated as 2.77 eV by using UV-Vis spectra. The MB-ZnO nanocomposites were tested in various in vitro biological assays, including biocompatibility assays against the macrophages and RBCs and the enzymes' inhibition potential assay against the protein kinase, alpha-amylase, cytotoxicity assays of the leishmanial parasites, anti-inflammatory activity, antifungal activity, and antioxidant activities. The maximum TAC (30.09%), TRP (36.29%), and DPPH radicals' scavenging potential (49.19%) were determined at the maximum dose of 200 µg/mL. Similarly, the maximum activity at the highest dose for the anti-inflammatory (76%), at 1000 μg/mL, alpha-amylase inhibition potential (45%), at 1000 μg/mL, antileishmanial activity (68%), at 100 μg/mL, and antifungal activity (73 ± 2.1%), at 19 mg/mL, was perceived, respectively. It did not cause any potential harm during the biocompatibility and cytotoxic assay and performed better during the anti-inflammatory and antioxidant assay. MB-ZnO caused moderate enzyme inhibition and was more effective against pathogenic fungus. The results of the current study indicated that MB-ZnO nanocomposites could be applied as effective catalysts in various processes. Moreover, this research provides valuable and the latest information to the readers and researchers working on biopolymers and nanocomposites.

摘要

纳米技术是一个至关重要且快速发展的领域,在各个商业领域都有多种用途。在各种类型的基于金属氧化物的纳米粒子中,氧化锌纳米粒子(ZnO NPs)由于其有效特性而被广泛使用。ZnO 纳米复合材料是安全且可生物降解的生物聚合物,它们被广泛应用于生物医学和治疗领域。在当前的研究中,使用无溶剂球磨技术制备了生物炭-氧化锌(MB-ZnO)纳米复合材料。通过扫描电子显微镜(SEM)、能量色散 X 射线(EDX)、X 射线粉末衍射(XRD)和热重分析(TGA)、傅里叶变换红外光谱(FTIR)和紫外-可见(UV)光谱对制备的 MB-ZnO 纳米复合材料进行了表征。通过在最高峰 36.36°处应用施勒尔方程,通过 X 射线线宽技术将 MB-ZnO 颗粒测量为 43nm。FTIR 光谱仪结果证实了 MB-ZnO 的形成。通过使用 UV-Vis 光谱,计算出 MB-ZnO 纳米复合材料的带隙能值为 2.77eV。MB-ZnO 纳米复合材料在各种体外生物测定中进行了测试,包括对巨噬细胞和 RBC 的生物相容性测定以及对蛋白激酶、α-淀粉酶的酶抑制潜力测定、对利什曼原虫寄生虫的细胞毒性测定、抗炎活性、抗真菌活性和抗氧化活性。在最大剂量为 200μg/mL 时,确定了最大 TAC(30.09%)、TRP(36.29%)和 DPPH 自由基清除潜力(49.19%)。同样,在最高剂量下,抗炎(76%)、α-淀粉酶抑制潜力(45%)、抗利什曼原虫活性(68%)和抗真菌活性(73±2.1%)的最高活性分别为 1000μg/mL、1000μg/mL、100μg/mL 和 19mg/mL。在生物相容性和细胞毒性测定中,它没有造成任何潜在的危害,并且在抗炎和抗氧化测定中表现更好。MB-ZnO 引起中等程度的酶抑制,对致病性真菌更有效。当前研究的结果表明,MB-ZnO 纳米复合材料可作为各种过程的有效催化剂。此外,本研究为从事生物聚合物和纳米复合材料研究的读者和研究人员提供了有价值的最新信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3726/9412314/d8d4d806eeda/molecules-27-05333-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验