Guimbao Joaquin, Sanchis Lorenzo, Weituschat Lukas M, Llorens Jose M, Postigo Pablo A
Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain.
The Institute of Optics, University of Rochester, Rochester, NY 14627, USA.
Nanomaterials (Basel). 2022 Aug 15;12(16):2800. doi: 10.3390/nano12162800.
Single photon sources (SPS) based on semiconductor quantum dot (QD) platforms are restricted to low temperature (T) operation due to the presence of strong dephasing processes. Although the integration of QD in optical cavities provides an enhancement of its emission properties, the technical requirements for maintaining high indistinguishability () at high T are still beyond the state of the art. Recently, new theoretical approaches have shown promising results by implementing two-dipole-coupled-emitter systems. Here, we propose a platform based on an optimized five-dipole-coupled-emitter system coupled to a cavity which enables perfect at high T. Within our scheme the realization of perfect single photon emission with dissipative QDs is possible using well established photonic platforms. For the optimization procedure we have developed a novel machine-learning approach which provides a significant computational-time reduction for high demanding optimization algorithms. Our strategy opens up interesting possibilities for the optimization of different photonic structures for quantum information applications, such as the reduction of quantum decoherence in clusters of coupled two-level quantum systems.
基于半导体量子点(QD)平台的单光子源(SPS)由于存在强退相过程而限于低温(T)运行。尽管将量子点集成到光学腔中可增强其发射特性,但在高温下保持高不可区分性()的技术要求仍超出当前技术水平。最近,新的理论方法通过实现双偶极耦合发射体系统已显示出有前景的结果。在此,我们提出一种基于优化的五偶极耦合发射体系统并耦合到一个腔的平台,该平台能在高温下实现完美的 。在我们的方案中,利用成熟的光子平台,使用耗散量子点实现完美的单光子发射是可能的。对于优化过程,我们开发了一种新颖的机器学习方法,该方法为高要求的优化算法显著减少了计算时间。我们的策略为优化用于量子信息应用的不同光子结构开辟了有趣的可能性,例如减少耦合二能级量子系统簇中的量子退相干。