Li Yongsheng, Li Jiawei, Wan Lingyu, Li Jiayu, Qu Hang, Ding Cui, Li Mingyang, Yu Dan, Fan Kaidi, Yao Huilu
Center on Nano-Energy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
Nanomaterials (Basel). 2022 Aug 17;12(16):2822. doi: 10.3390/nano12162822.
Recently, with the successful preparation of MoSiN an emerging family of two-dimensional (2D) layered materials has been predicted with a general formula of MAZ (M: an early transition metal, A: Si or Ge and Z: N, P, or As). In terms of this new type of 2D material, how to effectively tune its light absorption properties is unclear. We systematically discuss the effects of replacing Mo with Cr atoms on the lattice structure, energy bands, and light absorption properties of 2D monolayer MoSiN using density functional theory (DFT) and the Vienna Ab initio Simulation Package (VASP). Additionally, the results show that the single replacement of the atom Cr has no significant effect on the lattice structure of the outermost and sub-outer layers but plays a major role in the accumulation of electrons. In addition, the 2D MoSiN, MoCrSiN, and CrSiN all have effective electron-hole separation properties. In the visible region, as the excited state increases, the required excitation energy is higher and the corresponding wavelength of light is shorter. It was found that the ultraviolet (UV)-visible spectra are red-shifted when Cr atoms replace Mo atoms in MoSiN; when Cr atoms and Mo atoms coexist, the coupling between Cr atoms and Mo atoms achieves modulation of the ultraviolet (UV)-visible spectra. Finally, we reveal that doping M-site atoms can effectively tune the light absorption properties of MAZ materials. These results provide a strategy for the design of new 2D materials with high absorption properties.
最近,随着MoSiN的成功制备,人们预测了一个新兴的二维(2D)层状材料家族,其通式为MAZ(M:早期过渡金属,A:Si或Ge,Z:N、P或As)。对于这种新型二维材料,如何有效调节其光吸收特性尚不清楚。我们使用密度泛函理论(DFT)和维也纳从头算模拟包(VASP),系统地讨论了用Cr原子取代Mo原子对二维单层MoSiN的晶格结构、能带和光吸收特性的影响。此外,结果表明,单个Cr原子的取代对最外层和次外层的晶格结构没有显著影响,但对电子积累起主要作用。另外,二维MoSiN、MoCrSiN和CrSiN都具有有效的电子-空穴分离特性。在可见光区域,随着激发态的增加,所需的激发能量更高,相应的光波长更短。研究发现,当Cr原子取代MoSiN中的Mo原子时,紫外可见光谱发生红移;当Cr原子和Mo原子共存时,Cr原子与Mo原子之间的耦合实现了对紫外可见光谱的调制。最后,我们揭示了掺杂M位原子可以有效调节MAZ材料的光吸收特性。这些结果为设计具有高吸收特性的新型二维材料提供了一种策略。