Berger Alexander, Knak Talea, Kiffe-Delf Anna-Lene, Mudrovcic Korana, Singh Vinayak, Njoroge Mathew, Burckhardt Bjoern B, Gopalswamy Mohanraj, Lungerich Beate, Ackermann Lutz, Gohlke Holger, Chibale Kelly, Kalscheuer Rainer, Kurz Thomas
Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Pharmaceuticals (Basel). 2022 Aug 10;15(8):984. doi: 10.3390/ph15080984.
The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) endanger the World Health Organization's (WHO) goal to end the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid chlorflavonin by selective ruthenium(II)-catalyzed -C(sp)-H-hydroxylation of a substituted 3'-methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of 14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against () and their cytotoxicity against various human cell lines. The most promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against the virulent H37Rv strain of (Minimal Inhibitory Concentrations (MIC) = 0.78 μm). In addition, we determined the chemical and metabolic stability as well as the p values of chlorflavonin and bromflavonin. Furthermore, we established a quantitative structure-activity relationship model using a thermodynamic integration approach. Our computations may be used for suggesting further structural changes to develop improved derivatives.
耐多药(MDR)和广泛耐药(XDR)结核病在全球范围内持续传播,危及世界卫生组织(WHO)在2035年终结全球结核病流行的目标。在过去50年里,医药机构批准用于治疗耐药结核病的新药极少。因此,开发新型抗分枝杆菌候选药物以应对耐药结核病的威胁迫在眉睫。在这项工作中,我们通过选择性钌(II)催化的取代3'-甲氧基黄酮骨架的-C(sp)-H羟基化反应,开发并优化了抗分枝杆菌天然黄酮氯黄酮素的全合成方法。我们扩展该方法合成了一个包含14个结构类似物的小型化合物库。对新类似物进行了针对结核分枝杆菌()的体外抗分枝杆菌活性以及对各种人类细胞系的细胞毒性测试。最有前景的新类似物溴黄酮素对结核分枝杆菌强毒株H37Rv表现出增强的体外抗分枝杆菌活性(最低抑菌浓度(MIC)=0.78μm)。此外,我们测定了氯黄酮素和溴黄酮素的化学和代谢稳定性以及p值。此外,我们使用热力学积分方法建立了定量构效关系模型。我们的计算可用于建议进一步的结构变化以开发改进的衍生物。