Suppr超能文献

利用机器学习探索耐盐机制以获得转录组学见解:以……为例的案例研究

Exploring salt tolerance mechanisms using machine learning for transcriptomic insights: case study in .

作者信息

Huang Zhangping, Chen Shoukun, He Kunhui, Yu Tingxi, Fu Junjie, Gao Shang, Li Huihui

机构信息

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.

Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.

出版信息

Hortic Res. 2024 Mar 28;11(5):uhae082. doi: 10.1093/hr/uhae082. eCollection 2024 May.

Abstract

Salt stress poses a significant threat to global cereal crop production, emphasizing the need for a comprehensive understanding of salt tolerance mechanisms. Accurate functional annotations of differentially expressed genes are crucial for gaining insights into the salt tolerance mechanism. The challenge of predicting gene functions in under-studied species, especially when excluding infrequent GO terms, persists. Therefore, we proposed the use of NetGO 3.0, a machine learning-based annotation method that does not rely on homology information between species, to predict the functions of differentially expressed genes under salt stress. , a halophyte with salt glands, exhibits remarkable salt tolerance, making it an excellent candidate for in-depth transcriptomic analysis. However, current research on the transcriptome under salt stress is limited. In this study we used as an example to investigate its transcriptional responses to various salt concentrations, with a focus on understanding its salt tolerance mechanisms. Transcriptomic analysis revealed substantial changes impacting key pathways, such as gene transcription, ion transport, and ROS metabolism. Notably, we identified a member of the gene family in , , showing convergent selection with the rice ortholog . Additionally, our genome-wide analyses explored alternative splicing responses to salt stress, providing insights into the parallel functions of alternative splicing and transcriptional regulation in enhancing salt tolerance in . Surprisingly, there was minimal overlap between differentially expressed and differentially spliced genes following salt exposure. This innovative approach, combining transcriptomic analysis with machine learning-based annotation, avoids the reliance on homology information and facilitates the discovery of unknown gene functions, and is applicable across all sequenced species.

摘要

盐胁迫对全球谷类作物生产构成重大威胁,这凸显了全面了解耐盐机制的必要性。对差异表达基因进行准确的功能注释对于深入了解耐盐机制至关重要。在研究较少的物种中预测基因功能面临挑战,尤其是在排除不常见的基因本体(GO)术语时,这一挑战依然存在。因此,我们提议使用NetGO 3.0,这是一种基于机器学习的注释方法,不依赖物种间的同源信息,来预测盐胁迫下差异表达基因的功能。盐角草是一种具有盐腺的盐生植物,表现出显著的耐盐性,使其成为深入转录组分析的理想候选对象。然而,目前关于盐角草在盐胁迫下转录组的研究有限。在本研究中,我们以盐角草为例,研究其对不同盐浓度的转录反应,重点是了解其耐盐机制。转录组分析揭示了影响关键途径的大量变化,如基因转录、离子运输和活性氧代谢。值得注意的是,我们在盐角草中鉴定出了基因家族的一个成员,即SeNHX1,它与水稻直系同源基因表现出趋同选择。此外,我们的全基因组分析探索了盐胁迫下的可变剪接反应,为可变剪接和转录调控在增强盐角草耐盐性中的平行功能提供了见解。令人惊讶的是,盐处理后差异表达基因和差异剪接基因之间的重叠极少。这种将转录组分析与基于机器学习的注释相结合的创新方法,避免了对同源信息的依赖,有助于发现未知基因功能,并且适用于所有已测序物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a2/11101319/cba8cdf1d4dc/uhae082f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验