Zhang Di, Wei Kai, Yao Yi, Yang Jiacheng, Zheng Guolong, Li Qing
National and Local Joint Engineering Laboratories for Disaster Monitoring Technologies and Instruments, China Jiliang University, Hangzhou 310018, China.
Sensors (Basel). 2022 Aug 19;22(16):6240. doi: 10.3390/s22166240.
The capture and prediction of rainfall-induced landslide warning signals is the premise for the implementation of landslide warning measures. An attention-fusion entropy weight method (En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional neural network (ATCN) is used to predict the warning signals. Specifically, the sensor data are analyzed using Pearson correlation analysis after obtaining data from the sensors on rainfall, moisture content, displacement, and soil stress. The comprehensive evaluation score is obtained offline using multiple entropy weight methods. Then, the attention mechanism is used to weight and sum different entropy values to obtain the final landslide hazard degree (LHD). The LHD realizes the warning signal capture of the sensor data. The prediction process adopts a model built by ATCN and uses a sliding window for online dynamic prediction. The input is the landslide sensor data at the last moment, and the output is the LHD at the future moment. The effectiveness of the method is verified by two datasets obtained from the rainfall-induced landslide simulation experiment.
降雨诱发滑坡预警信号的捕捉与预测是实施滑坡预警措施的前提。提出了一种用于捕捉预警特征的注意力融合熵权法(En-Attn)。采用基于注意力的时间卷积神经网络(ATCN)来预测预警信号。具体而言,在获取降雨、含水量、位移和土壤应力等传感器数据后,利用皮尔逊相关分析对传感器数据进行分析。使用多种熵权法离线获取综合评价得分。然后,利用注意力机制对不同的熵值进行加权求和,得到最终的滑坡危险度(LHD)。LHD实现了对传感器数据的预警信号捕捉。预测过程采用由ATCN构建的模型,并使用滑动窗口进行在线动态预测。输入是上一时刻的滑坡传感器数据,输出是未来时刻的LHD。通过降雨诱发滑坡模拟实验得到的两个数据集验证了该方法的有效性。