School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China.
Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
Int J Environ Res Public Health. 2022 Feb 12;19(4):2077. doi: 10.3390/ijerph19042077.
In recent years, machine learning models facilitated notable performance improvement in landslide displacement prediction. However, most existing prediction models which ignore landslide data at each time can provide a different value and meaning. To analyze and predict landslide displacement better, we propose a dynamic landslide displacement prediction model based on time series analysis and a double-bidirectional long short term memory (Double-BiLSTM) model. First, the cumulative landslide displacement is decomposed into trend and periodic displacement components according to time series analysis via the exponentially weighted moving average (EWMA) method. We consider that trend displacement is mainly influenced by landslide factors, and we apply a BiLSTM model to predict landslide trend displacement. This paper analyzes the internal relationship between rainfall, reservoir level and landslide periodic displacement. We adopt the maximum information coefficient (MIC) method to calculate the correlation between influencing factors and periodic displacement. We employ the BiLSTM model for periodic displacement prediction. Finally, the model is validated against data pertaining to the Baishuihe landslide in the Three Gorges, China. The experimental results and evaluation indicators demonstrate that this method achieves a better prediction performance than the classical prediction methods, and landslide displacement can be effectively predicted.
近年来,机器学习模型在滑坡位移预测方面取得了显著的性能提升。然而,大多数现有的预测模型忽略了每个时间点的滑坡数据,这些数据具有不同的价值和意义。为了更好地分析和预测滑坡位移,我们提出了一种基于时间序列分析和双双向长短时记忆网络(Double-BiLSTM)模型的动态滑坡位移预测模型。首先,通过指数加权移动平均(EWMA)方法对累积滑坡位移进行时间序列分析,将其分解为趋势和周期位移分量。我们认为趋势位移主要受到滑坡因素的影响,因此我们应用 BiLSTM 模型来预测滑坡趋势位移。本文分析了降雨、库水位与滑坡周期位移之间的内在关系。我们采用最大信息系数(MIC)方法计算影响因素与周期位移之间的相关性。我们采用 BiLSTM 模型进行周期位移预测。最后,我们将该模型应用于中国三峡白水河滑坡的验证数据。实验结果和评价指标表明,该方法的预测性能优于经典预测方法,可以有效预测滑坡位移。