Suppr超能文献

有创机械通气患者静脉血栓栓塞症风险评估模型的开发与验证

Development and Validation of a Risk Assessment Model for Venous Thromboembolism in Patients With Invasive Mechanical Ventilation.

作者信息

Lin Jiajia, Zhang Yue, Lin Weixian, Meng Ying

机构信息

Departments of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, CHN.

出版信息

Cureus. 2022 Jul 23;14(7):e27164. doi: 10.7759/cureus.27164. eCollection 2022 Jul.

Abstract

Background Patients with invasive mechanical ventilation may be at high risk of acquiring venous thromboembolism (VTE). We aim to develop risk assessment models for predicting the improvement of VTE in invasively ventilated patients. Methodology A total of 6,734 invasively ventilated patients enrolled from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were used as input for model development and internal validation, while data from 168 patients from Nanfang Hospital were used for external validation. Logistic regression was performed based on predictive factors derived from least absolute shrinkage and selection operator (LASSO) regression analysis and logistic regression with backward selection to develop two Risk Assessment Models (RAM), namely, I and II, for the prediction of VTE, respectively. Model selection was performed by evaluation of the area under the receiver operating characteristic curve (AUC), the goodness of fit with calibration curves, and decision curve analyses (DCA). Results RAM-I included prior history of VTE, in-hospital immobilization, infection, glucose, the use of antiplatelet, and activated partial thromboplastin time (APTT) as variables, while RAM-II included prior history of VTE, in-hospital immobilization, infection, ischemic stroke, glucose, the use of antiplatelet and APTT as variables. Compared with RAM-I and ICU-Venous Thromboembolism Score, RAM-II exhibited better discrimination in the training dataset (AUC = 0.826), internal validation dataset (AUC = 0.771), and external validation dataset (AUC = 0.770). Additionally, DCA demonstrated that RAM-II was clinically beneficial. Inspection of the calibration curves revealed good agreement between the predictions and observations. Conclusions A RAM for VTE in invasively ventilated patients was developed with reasonable performance.

摘要

背景

有创机械通气患者发生静脉血栓栓塞症(VTE)的风险可能很高。我们旨在开发风险评估模型,以预测有创通气患者VTE的改善情况。

方法

总共6734例来自重症监护医学信息数据库三期(MIMIC-III)的有创通气患者被用作模型开发和内部验证的输入数据,而来自南方医院的168例患者的数据用于外部验证。基于最小绝对收缩和选择算子(LASSO)回归分析和向后选择的逻辑回归得出的预测因素进行逻辑回归,分别开发两个风险评估模型(RAM),即模型I和模型II,用于预测VTE。通过评估受试者工作特征曲线(AUC)下的面积、校准曲线的拟合优度和决策曲线分析(DCA)进行模型选择。

结果

RAM-I纳入的变量有VTE既往史、住院期间制动、感染、血糖、抗血小板药物使用情况和活化部分凝血活酶时间(APTT),而RAM-II纳入的变量有VTE既往史、住院期间制动、感染、缺血性卒中、血糖、抗血小板药物使用情况和APTT。与RAM-I和ICU静脉血栓栓塞评分相比,RAM-II在训练数据集(AUC = 0.826)、内部验证数据集(AUC = 0.771)和外部验证数据集(AUC = 0.770)中表现出更好的区分能力。此外,DCA表明RAM-II具有临床益处。校准曲线检查显示预测值与观察值之间具有良好的一致性。

结论

开发了一种用于有创通气患者VTE的RAM,其性能合理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb64/9393746/d638cf972bc6/cureus-0014-00000027164-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验