Suppr超能文献

利用反义 RNA 隔离和调控反馈克服 CRISPRi 电路的漏敏性。

Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback.

机构信息

Applied Physics, Cornell University, Ithaca, New York 14853, United States.

出版信息

ACS Synth Biol. 2022 Sep 16;11(9):2927-2937. doi: 10.1021/acssynbio.2c00155. Epub 2022 Aug 26.

Abstract

The controlled binding of the catalytically dead CRISPR nuclease (dCas) to DNA can be used to create complex, programmable transcriptional genetic circuits, a fundamental goal of synthetic biology. This approach, called CRISPR interference (CRISPRi), is advantageous over existing methods because the programmable nature of CRISPR proteins in principle enables the simultaneous regulation of many different targets without crosstalk. However, the performance of dCas-based genetic circuits is limited by both the sensitivity to leaky repression within CRISPRi logic gates and retroactive effects due to a shared pool of dCas proteins. By utilizing antisense RNAs (asRNAs) to sequester gRNA transcripts as well as CRISPRi feedback to self-regulate asRNA production, we demonstrate a mechanism that suppresses unwanted repression by CRISPRi and improves logical gene circuit function in . This improvement is particularly pronounced during stationary expression when CRISPRi circuits do not achieve the expected regulatory dynamics. Furthermore, the use of dual CRISPRi/asRNA inverters restores the logical performance of layered circuits such as a double inverter. By studying circuit induction at the single-cell level in microfluidic channels, we provide insight into the dynamics of antisense sequestration of gRNA and regulatory feedback on dCas-based repression and derepression. These results demonstrate how CRISPRi inverters can be improved for use in more complex genetic circuitry without sacrificing the programmability and orthogonality of dCas proteins.

摘要

通过控制催化失活的 CRISPR 核酸酶(dCas)与 DNA 的结合,可以构建复杂的、可编程的转录遗传回路,这是合成生物学的一个基本目标。这种方法被称为 CRISPR 干扰(CRISPRi),与现有方法相比具有优势,因为 CRISPR 蛋白的可编程性质原则上可以在没有串扰的情况下同时调节许多不同的靶标。然而,基于 dCas 的遗传回路的性能受到 CRISPRi 逻辑门中漏抑制的敏感性和由于共享 dCas 蛋白池而产生的反作用的限制。通过利用反义 RNA(asRNA)来隔离 gRNA 转录物以及 CRISPRi 反馈来自我调节 asRNA 的产生,我们展示了一种抑制 CRISPRi 中不需要的抑制作用并改善 在 中的逻辑基因回路功能的机制。当 CRISPRi 回路无法实现预期的调节动态时,这种改进在静止表达期间尤为明显。此外,双 CRISPRi/asRNA 反相器的使用恢复了双层电路(例如双反相器)的逻辑性能。通过在微流控通道中的单细胞水平上研究电路诱导,我们深入了解了 gRNA 的反义隔离和基于 dCas 的抑制和去抑制的调节反馈的动力学。这些结果表明,如何改进 CRISPRi 反相器以用于更复杂的遗传电路,而不会牺牲 dCas 蛋白的可编程性和正交性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab44/9486968/1f5404c6cd19/sb2c00155_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验