Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA.
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, the Netherlands.
New Phytol. 2022 Nov;236(4):1393-1408. doi: 10.1111/nph.18443. Epub 2022 Sep 17.
Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis verified select drought-responsive diterpenoids as oxygenated furanoditerpenoids. Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass drought responses. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance.
柳枝稷(Panicum virgatum)是一种生物能源模式作物,以其能效和耐旱性而受到重视。相关的单子叶植物水稻(Oryza sativa)和玉米(Zea mays)则会部署物种特异性的、特化的代谢物作为核心应激防御。相比之下,柳枝稷中的特化化学防御物质在很大程度上尚不清楚。为了研究柳枝稷中特化代谢对干旱的响应,我们整合了对具有不同耐旱性的基因型 Alamo 和 Cave-in-Rock 的组织特异性转录组和代谢物分析。与 Alamo 相比,耐旱性较差的 Cave-in-Rock 更早出现转录组变化,且对干旱的响应中差异表达基因的数量显著更多。与碳水化合物和氨基酸代谢中显著的转录组改变相比,特化途径表现出中等程度的差异表达。然而,在 Alamo 根中,二萜类生物合成基因的表达受干旱诱导,而三萜类和苯丙烷类途径则在很大程度上没有改变。代谢组学分析鉴定了常见和基因型特异性的类黄酮和萜类化合物。与转录组改变一致,几种根中二萜类化合物的含量在干旱诱导下显著增加,而三萜类化合物的丰度主要保持不变。结构分析证实了几种受干旱响应的二萜类化合物为含氧呋喃二萜类化合物。干旱相关的转录组和代谢物图谱为理解柳枝稷干旱响应的分子机制提供了基础。特化根中二萜类化合物和相应途径转录本的积累支持其在耐旱性中的作用。