Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
Department of Spinal Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
Med Phys. 2023 Jan;50(1):104-116. doi: 10.1002/mp.15961. Epub 2022 Sep 4.
Automated measurement of spine indices on axial magnetic resonance (MR) images plays a significant role in lumbar spinal stenosis diagnosis. Existing direct spine indices measurement approaches fail to explicitly focus on the task-specific region or feature channel with the additional information for guiding. We aim to achieve accurate spine indices measurement by introducing the guidance of the segmentation task.
In this paper, we propose a segmentation-guided regression network (SGRNet) to achieve automated spine indices measurement. SGRNet consists of a segmentation path for generating the spine segmentation prediction and a regression path for producing spine indices estimation. The segmentation path is a U-Net-like network which includes a segmentation encoder and a decoder which generates multilevel segmentation features and segmentation prediction. The proposed segmentation-guided attention module (SGAM) in the regression encoder extracts the attention-aware regression feature under the guidance of the segmentation feature. Based on the attention-aware regression feature, a fully connected layer is utilized to output the accurate spine indices estimation.
Experiments on the open-access Lumbar Spine MRI data set show that SGRNet achieves state-of-the-art performance with a mean absolute error of 0.49 mm and mean Pearson correlation coefficient of 0.956 for four indices estimation.
The proposed SGAM in SGRNet is capable of improving the performance of spine indices measurement by focusing on the task-specific region and feature channel under the guidance of the segmentation task.
在轴向磁共振(MR)图像上自动测量脊柱指数在腰椎椎管狭窄症的诊断中起着重要作用。现有的直接脊柱指数测量方法未能明确关注具有附加信息的特定于任务的区域或特征通道,以进行指导。我们旨在通过引入分割任务的指导来实现准确的脊柱指数测量。
在本文中,我们提出了一种分割引导回归网络(SGRNet),以实现自动的脊柱指数测量。SGRNet 由生成脊柱分割预测的分割路径和生成脊柱指数估计的回归路径组成。分割路径是一个类似于 U-Net 的网络,包括一个分割编码器和一个解码器,它们生成多级分割特征和分割预测。回归编码器中的提出的分割引导注意力模块(SGAM)在分割特征的指导下提取注意感知的回归特征。基于注意感知的回归特征,使用全连接层输出准确的脊柱指数估计。
在开放访问的腰椎 MRI 数据集上的实验表明,SGRNet 实现了最先进的性能,四个指数估计的平均绝对误差为 0.49mm,平均皮尔逊相关系数为 0.956。
SGRNet 中的提出的 SGAM 能够通过在分割任务的指导下关注特定于任务的区域和特征通道,提高脊柱指数测量的性能。