Suppr超能文献

DGMSNet:一种通过检测引导的混合监督分割网络对磁共振图像进行脊柱分割的方法

DGMSNet: Spine segmentation for MR image by a detection-guided mixed-supervised segmentation network.

作者信息

Pang Shumao, Pang Chunlan, Su Zhihai, Lin Liyan, Zhao Lei, Chen Yangfan, Zhou Yujia, Lu Hai, Feng Qianjin

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.

Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

出版信息

Med Image Anal. 2022 Jan;75:102261. doi: 10.1016/j.media.2021.102261. Epub 2021 Oct 27.

Abstract

Spine segmentation for magnetic resonance (MR) images is important for various spinal diseases diagnosis and treatment, yet is still a challenge due to the inter-class similarity, i.e., shape and appearance similarities appear in neighboring spinal structures. To reduce inter-class similarity, existing approaches focus on enhancing the semantic information of spinal structures in the supervised segmentation network, whose generalization is limited by the size of pixel-level annotated dataset. In this paper, we propose a novel detection-guided mixed-supervised segmentation network (DGMSNet) to achieve automated spine segmentation. DGMSNet consists of a segmentation path for generating the spine segmentation prediction and a detection path (i.e., regression network) for producing heatmaps prediction of keypoints. A detection-guided learner in the detection path is introduced to generate a dynamic parameter, which is employed to produce a semantic feature map for segmentation path by adaptive convolution. A mixed-supervised loss comprised of a weighted combination of segmentation loss and detection loss is utilized to train DGMSNet with a pixel-level annotated dataset and a keypoints-detection annotated dataset. During training, a series of models are trained with various loss weights. In inference, a detection-guided label fusion approach is proposed to integrate the segmentation predictions generated by those trained models according to the consistency of predictions from the segmentation path and detection path. Experiments on T2-weighted MR images show that DGMSNet achieves the state-of-the-art performance with mean Dice similarity coefficients of 94.39% and 87.21% for segmentations of 5 vertebral bodies and 5 intervertebral discs on the in-house and public datasets respectively.

摘要

磁共振(MR)图像的脊柱分割对于各种脊柱疾病的诊断和治疗至关重要,但由于类间相似性,即相邻脊柱结构中存在形状和外观相似性,它仍然是一个挑战。为了减少类间相似性,现有方法专注于在监督分割网络中增强脊柱结构的语义信息,其泛化能力受像素级标注数据集大小的限制。在本文中,我们提出了一种新颖的检测引导混合监督分割网络(DGMSNet)来实现自动脊柱分割。DGMSNet由一个用于生成脊柱分割预测的分割路径和一个用于生成关键点热图预测的检测路径(即回归网络)组成。在检测路径中引入了一个检测引导学习器来生成一个动态参数,该参数通过自适应卷积用于为分割路径生成语义特征图。利用由分割损失和检测损失的加权组合构成的混合监督损失,使用像素级标注数据集和关键点检测标注数据集来训练DGMSNet。在训练期间,使用各种损失权重训练一系列模型。在推理过程中,提出了一种检测引导标签融合方法,根据分割路径和检测路径预测的一致性,整合由那些训练模型生成的分割预测。在T2加权MR图像上的实验表明,DGMSNet在内部数据集和公共数据集上分别对5个椎体和5个椎间盘进行分割时,平均Dice相似系数达到94.39%和87.21%,取得了当前最优的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验