Suppr超能文献

运用现代机器学习方法研究新冠疫情期间家庭暴力的患病率、上升情况及预测因素。

Prevalence, increase and predictors of family violence during the COVID-19 pandemic, using modern machine learning approaches.

作者信息

Todorovic Kristina, O'Leary Erin, Ward Kaitlin P, Devarasetty Pratyush P, Lee Shawna J, Knox Michele, Andari Elissar

机构信息

Department of Psychology, University of Toledo, Toledo, OH, United States.

Department of Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States.

出版信息

Front Psychiatry. 2022 Aug 11;13:883294. doi: 10.3389/fpsyt.2022.883294. eCollection 2022.

Abstract

BACKGROUND

We are facing an ongoing pandemic of coronavirus disease 2019 (COVID-19), which is causing detrimental effects on mental health, including disturbing consequences on child maltreatment and intimate partner violence.

METHODS

We sought to identify predictors of child maltreatment and intimate partner violence from 380 participants (mean age 36.67 ± 10.61, 63.2% male; Time 3: June 2020) using modern machine learning analysis (random forest and SHAP values). We predicted that COVID-related factors (such as days in lockdown), parents' psychological distress during the pandemic (anxiety, depression), their personality traits, and their intimate partner relationship will be key contributors to child maltreatment. We also examined if there is an increase in family violence during the pandemic by using an additional cohort at two time points (Time 1: March 2020, = 434; mean age 35.67 ± 9.85, 41.69% male; and Time 2: April 2020, = 515; mean age 35.3 ± 9.5, 34.33%).

RESULTS

Feature importance analysis revealed that parents' affective empathy, psychological well-being, outdoor activities with children as well as a reduction in physical fights between partners are strong predictors of a reduced risk of child maltreatment. We also found a significant increase in physical punishment (Time 3: 66.26%) toward children, as well as in physical (Time 3: 36.24%) and verbal fights (Time 3: 41.08%) among partners between different times.

CONCLUSION

Using modernized predictive algorithms, we present a spectrum of features that can have influential weight on prediction of child maltreatment. Increasing awareness about family violence consequences and promoting parenting programs centered around mental health are imperative.

摘要

背景

我们正面临2019冠状病毒病(COVID-19)的持续大流行,这对心理健康造成了有害影响,包括对儿童虐待和亲密伴侣暴力产生令人不安的后果。

方法

我们试图通过现代机器学习分析(随机森林和SHAP值),从380名参与者(平均年龄36.67±10.61岁,63.2%为男性;时间点3:2020年6月)中识别儿童虐待和亲密伴侣暴力的预测因素。我们预测,与COVID相关的因素(如封锁天数)、疫情期间父母的心理困扰(焦虑、抑郁)、他们的人格特质以及他们的亲密伴侣关系将是儿童虐待的关键促成因素。我们还通过在两个时间点使用另外一组人群(时间点1:2020年3月,n = 434;平均年龄35.67±9.85岁,41.69%为男性;时间点2:2020年4月,n = 515;平均年龄35.3±9.5岁,34.33%为男性),研究了疫情期间家庭暴力是否增加。

结果

特征重要性分析表明,父母的情感同理心、心理健康、与孩子的户外活动以及伴侣间肢体冲突的减少是儿童虐待风险降低的有力预测因素。我们还发现,不同时间之间,对儿童的体罚显著增加(时间点3:66.26%),伴侣间的肢体冲突(时间点3:36.24%)和言语冲突(时间点3:41.08%)也显著增加。

结论

通过现代化的预测算法,我们呈现了一系列对儿童虐待预测具有重要影响权重的特征。提高对家庭暴力后果的认识并推广以心理健康为中心的育儿项目势在必行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d72/9403070/8e82b518b3a7/fpsyt-13-883294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验