Suppr超能文献

LDADN:一种用于尘肺病检测中增强的关键区域引导胸部X光图像合成的局部判别辅助解缠网络。

LDADN: a local discriminant auxiliary disentangled network for key-region-guided chest X-ray image synthesis augmented in pneumoconiosis detection.

作者信息

Fan Li, Wang Zelin, Zhou Jianguang

机构信息

Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China.

出版信息

Biomed Opt Express. 2022 Jul 27;13(8):4353-4369. doi: 10.1364/BOE.461888. eCollection 2022 Aug 1.

Abstract

Pneumoconiosis is deemed one of China's most common and serious occupational diseases. Its high prevalence and treatment cost create enormous pressure on socio-economic development. However, due to the scarcity of labeled data and class-imbalanced training sets, the computer-aided diagnostic based on chest X-ray (CXR) images of pneumoconiosis remains a challenging task. Current CXR data augmentation solutions cannot sufficiently extract small-scaled features in lesion areas and synthesize high-quality images. Thus, it may cause error detection in the diagnosis phase. In this paper, we propose a local discriminant auxiliary disentangled network (LDADN) to synthesize CXR images and augment in pneumoconiosis detection. This model enables the high-frequency transfer of details by leveraging batches of mutually independent local discriminators. Cooperating with local adversarial learning and the Laplacian filter, the feature in the lesion area can be disentangled by a single network. The results show that LDADN is superior to other compared models in the quantitative assessment metrics. When used for data augmentation, the model synthesized image significantly boosts the performance of the detection accuracy to 99.31%. Furthermore, this study offers beneficial references for insufficient label or class imbalanced medical image data analysis.

摘要

尘肺病被认为是中国最常见且最严重的职业病之一。其高发病率和治疗成本给社会经济发展带来了巨大压力。然而,由于标记数据稀缺且训练集存在类别不平衡问题,基于尘肺病胸部X光(CXR)图像的计算机辅助诊断仍然是一项具有挑战性的任务。当前的CXR数据增强解决方案无法充分提取病变区域的小尺度特征并合成高质量图像。因此,这可能会在诊断阶段导致错误检测。在本文中,我们提出了一种局部判别辅助解缠网络(LDADN)来合成CXR图像并用于尘肺病检测的数据增强。该模型通过利用一批相互独立的局部判别器实现细节的高频传递。通过与局部对抗学习和拉普拉斯滤波器协作,单个网络就能解缠病变区域的特征。结果表明,在定量评估指标方面,LDADN优于其他对比模型。当用于数据增强时,该模型合成的图像显著提高了检测准确率,达到了99.31%。此外,本研究为标签不足或类别不平衡的医学图像数据分析提供了有益的参考。

相似文献

5
A GAN-based image synthesis method for skin lesion classification.一种基于生成对抗网络的用于皮肤病变分类的图像合成方法。
Comput Methods Programs Biomed. 2020 Oct;195:105568. doi: 10.1016/j.cmpb.2020.105568. Epub 2020 May 29.

本文引用的文献

4
GANs for medical image analysis.生成对抗网络在医学图像分析中的应用。
Artif Intell Med. 2020 Sep;109:101938. doi: 10.1016/j.artmed.2020.101938. Epub 2020 Aug 9.
5
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
9
Generative adversarial network in medical imaging: A review.生成对抗网络在医学影像中的应用:综述
Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.
10
On the Effectiveness of Least Squares Generative Adversarial Networks.最小二乘生成对抗网络的有效性。
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2947-2960. doi: 10.1109/TPAMI.2018.2872043. Epub 2018 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验