Wu Ruoyu, Liang Changyu, Zhang Jiuquan, Tan QiJuan, Huang Hong
Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China.
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China.
Biomed Opt Express. 2024 Jan 29;15(2):1195-1218. doi: 10.1364/BOE.504875. eCollection 2024 Feb 1.
The accurate position detection of lung nodules is crucial in early chest computed tomography (CT)-based lung cancer screening, which helps to improve the survival rate of patients. Deep learning methodologies have shown impressive feature extraction ability in the CT image analysis task, but it is still a challenge to develop a robust nodule detection model due to the salient morphological heterogeneity of nodules and complex surrounding environment. In this study, a multi-kernel driven 3D convolutional neural network (MK-3DCNN) is proposed for computerized nodule detection in CT scans. In the MK-3DCNN, a residual learning-based encoder-decoder architecture is introduced to employ the multi-layer features of the deep model. Considering the various nodule sizes and shapes, a multi-kernel joint learning block is developed to capture 3D multi-scale spatial information of nodule CT images, and this is conducive to improving nodule detection performance. Furthermore, a multi-mode mixed pooling strategy is designed to replace the conventional single-mode pooling manner, and it reasonably integrates the max pooling, average pooling, and center cropping pooling operations to obtain more comprehensive nodule descriptions from complicated CT images. Experimental results on the public dataset LUNA16 illustrate that the proposed MK-3DCNN method achieves more competitive nodule detection performance compared to some state-of-the-art algorithms. The results on our constructed clinical dataset CQUCH-LND indicate that the MK-3DCNN has a good prospect in clinical practice.
在基于胸部计算机断层扫描(CT)的早期肺癌筛查中,肺结节的准确位置检测至关重要,这有助于提高患者的生存率。深度学习方法在CT图像分析任务中展现出了令人印象深刻的特征提取能力,但由于结节显著的形态异质性和复杂的周围环境,开发一个强大的结节检测模型仍然是一项挑战。在本研究中,提出了一种多内核驱动的三维卷积神经网络(MK-3DCNN)用于CT扫描中的计算机化结节检测。在MK-3DCNN中,引入了基于残差学习的编码器-解码器架构以利用深度模型的多层特征。考虑到结节的各种大小和形状,开发了一个多内核联合学习模块来捕捉结节CT图像的三维多尺度空间信息,这有利于提高结节检测性能。此外,设计了一种多模式混合池化策略来取代传统的单模式池化方式,它合理地整合了最大池化、平均池化和中心裁剪池化操作,以便从复杂的CT图像中获得更全面的结节描述。在公共数据集LUNA16上的实验结果表明,与一些最先进的算法相比,所提出的MK-3DCNN方法实现了更具竞争力的结节检测性能。在我们构建的临床数据集CQUCH-LND上的结果表明,MK-3DCNN在临床实践中有良好的前景。