Cao Mingjing, Zhang Kai, Zhang Shuhan, Wang Yaling, Chen Chunying
CAS Key Laboratory for Biomedical Effects of Nanomedicines and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
ACS Cent Sci. 2022 Aug 24;8(8):1063-1080. doi: 10.1021/acscentsci.2c00680. Epub 2022 Aug 1.
Exploration of the biological behavior and fate of nanoparticles, as affected by the nanomaterial-biology (nano-bio) interaction, has become progressively critical for guiding the rational design and optimization of nanomedicines to minimize adverse effects, support clinical translation, and aid in evaluation by regulatory agencies. Because of the complexity of the biological environment and the dynamic variations in the bioactivity of nanomedicines, , label-free analysis of the transport and transformation of nanomedicines has remained a challenge. Recent improvements in optics, detectors, and light sources have allowed the expansion of advanced light source (ALS) analytical technologies to dig into the underexplored behavior and fate of nanomedicines . It is increasingly important to further develop ALS-based analytical technologies with higher spatial and temporal resolution, multimodal data fusion, and intelligent prediction abilities to fully unlock the potential of nanomedicines. In this Outlook, we focus on several selected ALS analytical technologies, including imaging and spectroscopy, and provide an overview of the emerging opportunities for their applications in the exploration of the biological behavior and fate of nanomedicines. We also discuss the challenges and limitations faced by current approaches and tools and the expectations for the future development of advanced light sources and technologies. Improved ALS imaging and spectroscopy techniques will accelerate a profound understanding of the biological behavior of new nanomedicines. Such advancements are expected to inspire new insights into nanomedicine research and promote the development of ALS capabilities and methods more suitable for nanomedicine evaluation with the goal of clinical translation.
探索受纳米材料 - 生物学(纳米 - 生物)相互作用影响的纳米颗粒的生物学行为和归宿,对于指导纳米药物的合理设计和优化以尽量减少不良反应、支持临床转化并协助监管机构进行评估已变得日益关键。由于生物环境的复杂性以及纳米药物生物活性的动态变化,对纳米药物的运输和转化进行无标记分析仍然是一项挑战。光学、探测器和光源方面的最新进展使得先进光源(ALS)分析技术得以扩展,从而深入探究纳米药物尚未充分探索的行为和归宿。进一步开发具有更高空间和时间分辨率、多模态数据融合以及智能预测能力的基于ALS的分析技术,以充分释放纳米药物的潜力变得越来越重要。在本展望中,我们重点关注几种选定的ALS分析技术,包括成像和光谱学,并概述其在探索纳米药物生物学行为和归宿中的应用所带来的新机遇。我们还讨论了当前方法和工具面临的挑战和局限性以及对先进光源和技术未来发展的期望。改进的ALS成像和光谱技术将加速对新型纳米药物生物学行为的深入理解。这些进展有望激发对纳米医学研究的新见解,并推动更适合临床转化目标的纳米医学评估的ALS能力和方法的发展。