Suppr超能文献

通过混合子集选择进行降维的监督式方法。

A supervised take on dimensionality reduction via hybrid subset selection.

作者信息

Rahimikollu Javad, Das Jishnu

机构信息

CMU-Pitt Program in Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Patterns (N Y). 2022 Aug 12;3(8):100563. doi: 10.1016/j.patter.2022.100563.

Abstract

Amouzgar et al. present HSS-LDA, a supervised dimensionality reduction approach for single-cell data that outperforms existing unsupervised techniques. They couple hybrid subset selection to linear discriminant analysis and identify interpretable linear combinations of predictors that best separate predefined biological groups.

摘要

阿莫兹加尔等人提出了HSS-LDA,这是一种用于单细胞数据的有监督降维方法,其性能优于现有的无监督技术。他们将混合子集选择与线性判别分析相结合,并识别出能最佳区分预定义生物组的预测变量的可解释线性组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c1/9403371/8158aeedfc49/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验