Suppr超能文献

新型高通量 AmpliSeq 靶向检测方法,可用于多个地理尺度的遗传监测应用案例。

Novel highly-multiplexed AmpliSeq targeted assay for genetic surveillance use cases at multiple geographical scales.

机构信息

Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.

Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam.

出版信息

Front Cell Infect Microbiol. 2022 Aug 11;12:953187. doi: 10.3389/fcimb.2022.953187. eCollection 2022.

Abstract

Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of . Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the and genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.

摘要

虽然遗传监测工具的威力已得到广泛认可,但疟疾流行国家仍迫切需要可行且具有成本效益的工具,以便在国家疟疾控制规划(NMCP)中实施,从而为疟疾控制和消除策略提供指导,尤其是在这种情况下。已经确定了几种遗传监测应用(“用例”),以协调研究、技术开发和公共卫生工作,这需要不同类型的分子标记。在这里,我们提出了一种新的高通量深度测序检测方法(Pv AmpliSeq)。该检测方法针对 33-SNP vivaxGEN-geo 面板进行国家分类,并针对越南的寄生虫动力学和 11 个潜在药物抗性基因进行了新设计的 42-SNP 国内条形码分析,这在具有简单工作流程的高通量 NGS 协议中具有高度的多重性,适用于许多不同的遗传监测用例。使用以下方法对 Pv AmpliSeq 检测方法进行了验证:1)来自比利时旅行者和移民的分离株,以及 2)越南国家疟疾控制规划在哨点的常规收集。该检测方法针对 229 个扩增子,实现了高深度覆盖(平均 595.7±481)和高精度(平均错误率为 0.013±0.007)。从干血斑中可以对 寄生虫进行特征分析,最低检测下限为 5 个寄生虫/µL 和 10%的少数克隆。该检测方法在使用针对特定国家和地区特定稀有等位基因的 33-SNP vivaxGEN-geo 面板进行国家间起源预测时,实现了良好的空间特异性。使用针对常见等位基因(中位 MAF 为 0.34,范围为 0.01-0.49)的新设计的 42-SNP 国内条形码,在越南实现了高分辨率的国内多样性。在(潜在)药物抗性基因中检测到了许多变体,在越南不同省份的 和 基因中存在不同的主要单倍型。该检测方法具有高分辨率的同源性分析能力,证明了在越南中高原嘉莱省和沿海省份平定省和林同省之间存在较高的共同祖先率。该方法在多个空间尺度上对分离株进行了很好的地理区分,检测到了潜在抗性基因中的变体,并可以根据需要在一个国家或地区内的其他设置中进行调整。我们优先使该工具在流行国家的研究人员和 NMCP 中可用,以增加所有权并确保数据用于决策和疟疾政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b19/9403277/b2ea871b1166/fcimb-12-953187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验