Suppr超能文献

基于临床数据的 CT 影像组学模型预测胃肠胰腺神经内分泌肿瘤(GP-NENs)患者的预后。

Clinical Data-CT Radiomics-Based Model for Predicting Prognosis of Patients with Gastrointestinal Pancreatic Neuroendocrine Neoplasms (GP-NENs).

机构信息

Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.

Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.

出版信息

Comput Math Methods Med. 2022 Aug 5;2022:4186305. doi: 10.1155/2022/4186305. eCollection 2022.

Abstract

PURPOSE

Based on computerized tomography (CT) radiomics and clinical data, a model was established to predict the prognosis of patients with gastrointestinal pancreatic neuroendocrine neoplasms (GP-NENs).

METHODS

In the data collection, the clinical imaging and survival follow-up data of 225 GP-NENs patients admitted to Xiangyang No.1 People's Hospital and Jiangsu Province Hospital of Chinese Medicine from August 2015 to February 2021 were collected. According to the follow-up results, they were divided into the nonrecurrent group ( = 108) and the recurrent group ( = 117), based on which a training set and a test set were established at a ratio of 7/3. In the training set, a variety of models were established with significant clinical and imaging data ( < 0.05) to predict the prognosis of GP-NENs patients, and then these models were verified in the test set.

RESULTS

Our newly developed combined prediction model had high predictive efficacy. Univariate analysis showed that Radscore 1/2/3, age, Ki-67 index, tumor pathological type, tumor primary site, and TNM stage were risk factors for the prognosis of GP-NENs patients (all < 0.05). The area under the receiver operating characteristic (ROC) curves (AUC) of the combined model was significantly higher [AUC:0.824, 95% CI 0.0342 (0.751-0.883)] than that of the clinical data model [AUC:0.786, 95% CI 0.0384(0.709-0.851)] and the radiomics model [AUC:0.712, 95% CI 0.0426(0.631-0.785)]. The decision curve also confirmed that the combined model had a higher clinical net benefit. The same results were achieved in the test set.

CONCLUSION

The prognosis of patients with GP-NENs is generally poor. The combined model based on clinical data and CT radiomics can help to early predict the prognosis of patients with GP-NENs, and then necessary interventions could be provided to improve the survival rate and quality of life of patients.

摘要

目的

基于计算机断层扫描(CT)放射组学和临床数据,建立一种预测胃肠胰神经内分泌肿瘤(GP-NENs)患者预后的模型。

方法

在数据采集过程中,收集了 2015 年 8 月至 2021 年 2 月期间襄阳市第一人民医院和江苏省中医院收治的 225 例 GP-NENs 患者的临床影像学和生存随访数据。根据随访结果,将患者分为非复发性组(=108)和复发性组(=117),在此基础上建立了训练集和测试集,比例为 7/3。在训练集中,使用具有显著临床和影像学数据(<0.05)的多种模型来预测 GP-NENs 患者的预后,然后在测试集中对这些模型进行验证。

结果

我们新开发的联合预测模型具有较高的预测效能。单因素分析显示,Radscore 1/2/3、年龄、Ki-67 指数、肿瘤病理类型、肿瘤原发部位和 TNM 分期是 GP-NENs 患者预后的危险因素(均<0.05)。联合模型的受试者工作特征(ROC)曲线下面积(AUC)显著高于临床数据模型[AUC:0.824,95%置信区间(0.0342,0.751-0.883)]和放射组学模型[AUC:0.712,95%置信区间(0.0426,0.631-0.785)]。决策曲线也证实联合模型具有更高的临床净收益。在测试集中也得到了相同的结果。

结论

GP-NENs 患者的预后一般较差。基于临床数据和 CT 放射组学的联合模型有助于早期预测 GP-NENs 患者的预后,然后可以提供必要的干预措施,提高患者的生存率和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d254/9410919/c8d21835a6dc/CMMM2022-4186305.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验