Suppr超能文献

基于神经网络的梅尼埃病患者宽频鼓室导抗图特征

[Characteristics of wideband tympanometry in patients with Ménière's disease based on neutral network].

作者信息

Wu Yan, He Baihui, Shen Min, Yang Yan, Jin Yulian, Zhang Qing, Yang Jun, Li Shuna

机构信息

Department of Otorhinolaryngology-Head & Neck Surgery,Xinhua Hospital,Shanghai Jiaotong University School of Medicine.

Liaoning Medical Instrument Inspection and Testing Institute.

出版信息

Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2022 Sep;36(9):685-690. doi: 10.13201/j.issn.2096-7993.2022.09.007.

Abstract

To construct a prediction model for Ménière's disease based on neural network and evaluate its prediction ability. Sixty-four patients with Ménière's disease underwent gadolinium enhanced magnetic resonance imaging of inner ear which showed endolymphatic hydrops. Meanwhile, 40 healthy adults were enrolled as controls. The database of wideband tympanometry of patients and control subjects was analyzed, and the neural network model was established by MATLAB 2021a software. The prediction ability of the model was evaluated by accuracy, positive predictive value, negative predictive value, the Youden index, sensitivity, specificity, receiver operating characteristic curve and area under curve (AUC). A feedforward network model was built with a single hidden layer to predict Ménière's disease with wideband tympanometry. There were 104 features in the input layer, 13 neuron nodes in the hidden layer and 1 output neuron in the output layer. The accuracy of the model was 83.2%, the positive predictive value was 80.7%, the negative predictive value was 84.3%, the sensitivity was 76.5%, the specificity was 83.7%, the Youden index was 0.602, and the AUC was 0.855. Based on neural network, the prediction model of Ménière's disease with high accuracy was constructed according to the results of wideband tympanometry, which provided reference for the diagnose of Ménière's disease.

摘要

构建基于神经网络的梅尼埃病预测模型并评估其预测能力。64例梅尼埃病患者接受了内耳钆增强磁共振成像检查,显示存在内淋巴积水。同时,纳入40名健康成年人作为对照。分析患者和对照受试者的宽带鼓室导抗图数据库,并使用MATLAB 2021a软件建立神经网络模型。通过准确率、阳性预测值、阴性预测值、约登指数、敏感性、特异性、受试者工作特征曲线和曲线下面积(AUC)评估模型的预测能力。构建了一个具有单个隐藏层的前馈网络模型,以通过宽带鼓室导抗图预测梅尼埃病。输入层有104个特征,隐藏层有13个神经元节点,输出层有1个输出神经元。模型的准确率为83.2%,阳性预测值为80.7%,阴性预测值为84.3%,敏感性为76.5%,特异性为83.7%,约登指数为0.602,AUC为0.855。基于神经网络,根据宽带鼓室导抗图结果构建了高精度的梅尼埃病预测模型,为梅尼埃病的诊断提供了参考。

相似文献

1
[Characteristics of wideband tympanometry in patients with Ménière's disease based on neutral network].基于神经网络的梅尼埃病患者宽频鼓室导抗图特征
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2022 Sep;36(9):685-690. doi: 10.13201/j.issn.2096-7993.2022.09.007.
2
[Acoustic absorbance characteristics of wideband tympanometry in patients with Meniere's disease].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019 Mar;33(3):224-227. doi: 10.13201/j.issn.1001-1781.2019.03.010.
3
Analysis of wideband tympanometry in Ménière's disease.梅尼埃病的宽频鼓室压分析。
Braz J Otorhinolaryngol. 2022 Mar-Apr;88(2):194-203. doi: 10.1016/j.bjorl.2020.05.029. Epub 2020 Jul 21.

本文引用的文献

3
Wideband acoustic immittance in superior semicircular canal dehiscence.上半规管裂综合征的宽频声导抗。
Auris Nasus Larynx. 2022 Dec;49(6):921-927. doi: 10.1016/j.anl.2022.03.008. Epub 2022 Mar 27.
5
Different Data Mining Approaches Based Medical Text Data.基于医学文本数据的不同数据挖掘方法。
J Healthc Eng. 2021 Dec 6;2021:1285167. doi: 10.1155/2021/1285167. eCollection 2021.
6
[A preliminary study on characteristics of wideband acoustic immittance in patients with Meniere's disease].[梅尼埃病患者宽带声导抗特征的初步研究]
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2021 Dec;35(12):1068-1072. doi: 10.13201/j.issn.2096-7993.2021.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验