Suppr超能文献

[大前庭导水管综合征患儿的宽带声导抗特征及基于机器学习的诊断模型]

[Wideband acoustic immittance characteristics and machine learning-based diagnostic model for children with large vestibular aqueduct syndrome].

作者信息

Mu Yi, Jiang Wen, Lin Huan, Yue Yuhong, Qiao Yuehua, Liu Wen

机构信息

The Otolaryngology Department of the Affiliated Hospital of Xuzhou Medical University,Xuzhou,221000,China.

The Medical Technology College of Xuzhou Medical University.

出版信息

Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024 Mar;38(3):207-211;216. doi: 10.13201/j.issn.2096-7993.2024.03.005.

Abstract

This study was to investigate the wideband acoustic immittance(WAI) characteristics of children with large vestibular aqueduct syndrome(LVAS) and to construct a diagnostic model for LVAS based on WAI and machine learning(ML) techniques. We performed a retrospective analysis of the data from 38 children(76 ears) with LVAS and 44 children(88 ears) with normal hearing. The data included conventional audiological examination, temporal bone CT scan and WAI test. We performed statistical analysis and developed multivariate diagnostic models based on different ML techniques. The two groups were balanced in terms of ear, gender, and age(>0.05). The wideband absorbance(WBA) of the LVAS group was significantly lower than that of the control group at 1 000-2 519 Hz, while the WBA of the LVAS group was significantly higher than that of the control group at 4 000-6 349 Hz(<0.05). WBA at 5 039 Hz under ambient pressure had a certain diagnostic value(AUC=0.767). The multivariate diagnostic model had a high diagnostic value(AUC>0.8), among which the KNN model performed the best(AUC=0.961). The WAI characteristics of children with LVAS are significantly different from those of normal children. The diagnostic model based on WAI and ML techniques has high accuracy and reliability, and provides new ideas and methods for intelligent diagnosis of LVAS.

摘要

本研究旨在探讨大前庭导水管综合征(LVAS)患儿的宽带声导抗(WAI)特征,并基于WAI和机器学习(ML)技术构建LVAS的诊断模型。我们对38例(76耳)LVAS患儿和44例听力正常儿童(88耳)的数据进行了回顾性分析。数据包括常规听力学检查、颞骨CT扫描和WAI测试。我们进行了统计分析,并基于不同的ML技术开发了多变量诊断模型。两组在耳、性别和年龄方面均衡(>0.05)。LVAS组在1000 - 2519Hz的宽带吸收率(WBA)显著低于对照组,而LVAS组在4000 - 6349Hz的WBA显著高于对照组(<0.05)。常压下5039Hz的WBA具有一定的诊断价值(AUC = 0.767)。多变量诊断模型具有较高的诊断价值(AUC>0.8),其中KNN模型表现最佳(AUC = 0.961)。LVAS患儿的WAI特征与正常儿童有显著差异。基于WAI和ML技术的诊断模型具有较高的准确性和可靠性,为LVAS的智能诊断提供了新的思路和方法。

相似文献

8
Study on characteristics of wideband acoustic immittance in patients with Inner Ear Malformations.内耳畸形患者宽频声导抗特征研究。
Int J Pediatr Otorhinolaryngol. 2024 Jan;176:111802. doi: 10.1016/j.ijporl.2023.111802. Epub 2023 Nov 27.
9
Evaluation of the radiological criteria to diagnose large vestibular aqueduct syndrome.用于诊断大前庭导水管综合征的放射学标准评估。
Int J Pediatr Otorhinolaryngol. 2016 Feb;81:84-91. doi: 10.1016/j.ijporl.2015.12.012. Epub 2015 Dec 30.

引用本文的文献

本文引用的文献

3
Wideband Acoustic Immittance in Children.儿童宽带声导抗
Semin Hear. 2023 Mar 1;44(1):46-64. doi: 10.1055/s-0043-1763294. eCollection 2023 Feb.
5
[Research progress in accurate diagnosis of large vestibular aqueduct syndrome].[大前庭导水管综合征精准诊断的研究进展]
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2022 Sep 7;57(9):1135-1139. doi: 10.3760/cma.j.cn115330-20220330-00147.
6
[Characteristics of wideband tympanometry in patients with Ménière's disease based on neutral network].基于神经网络的梅尼埃病患者宽频鼓室导抗图特征
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2022 Sep;36(9):685-690. doi: 10.13201/j.issn.2096-7993.2022.09.007.
8
Radiation exposure by medical X-ray applications.医疗 X 射线应用的辐射暴露。
Ger Med Sci. 2022 Mar 31;20:Doc06. doi: 10.3205/000308. eCollection 2022.
10
[A preliminary study on characteristics of wideband acoustic immittance in patients with Meniere's disease].[梅尼埃病患者宽带声导抗特征的初步研究]
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2021 Dec;35(12):1068-1072. doi: 10.13201/j.issn.2096-7993.2021.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验