Suppr超能文献

基于知识图谱和多任务学习的健康感知食物推荐

Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning.

作者信息

Chen Yi, Guo Yandi, Fan Qiuxu, Zhang Qinghui, Dong Yu

机构信息

Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China.

School of Computer Science, University of Technology Sydney, Sydney, NSW 2008, Australia.

出版信息

Foods. 2023 May 22;12(10):2079. doi: 10.3390/foods12102079.

Abstract

Current food recommender systems tend to prioritize either the user's dietary preferences or the healthiness of the food, without considering the importance of personalized health requirements. To address this issue, we propose a novel approach to healthy food recommendations that takes into account the user's personalized health requirements, in addition to their dietary preferences. Our work comprises three perspectives. Firstly, we propose a collaborative recipe knowledge graph (CRKG) with millions of triplets, containing user-recipe interactions, recipe-ingredient associations, and other food-related information. Secondly, we define a score-based method for evaluating the healthiness match between recipes and user preferences. Based on these two prior perspectives, we develop a novel health-aware food recommendation model (FKGM) using knowledge graph embedding and multi-task learning. FKGM employs a knowledge-aware attention graph convolutional neural network to capture the semantic associations between users and recipes on the collaborative knowledge graph and learns the user's requirements in both preference and health by fusing the losses of these two learning tasks. We conducted experiments to demonstrate that FKGM outperformed four competing baseline models in integrating users' dietary preferences and personalized health requirements in food recommendations and performed best on the health task.

摘要

当前的食物推荐系统往往要么优先考虑用户的饮食偏好,要么优先考虑食物的健康程度,而没有考虑个性化健康需求的重要性。为了解决这个问题,我们提出了一种新颖的健康食物推荐方法,该方法除了考虑用户的饮食偏好外,还考虑了用户的个性化健康需求。我们的工作包括三个方面。首先,我们提出了一个包含数百万个三元组的协作式食谱知识图谱(CRKG),其中包含用户与食谱的交互、食谱与食材的关联以及其他与食物相关的信息。其次,我们定义了一种基于分数的方法来评估食谱与用户偏好之间的健康匹配度。基于这两个方面,我们使用知识图谱嵌入和多任务学习开发了一种新颖的健康感知食物推荐模型(FKGM)。FKGM采用知识感知注意力图卷积神经网络来捕捉协作知识图谱上用户与食谱之间的语义关联,并通过融合这两个学习任务的损失来学习用户在偏好和健康方面的需求。我们进行了实验,结果表明FKGM在将用户的饮食偏好和个性化健康需求整合到食物推荐方面优于四个竞争的基线模型,并且在健康任务上表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3644/10216993/890bfecd57b0/foods-12-02079-g001.jpg

相似文献

1
Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning.
Foods. 2023 May 22;12(10):2079. doi: 10.3390/foods12102079.
2
Nutrition-Related Knowledge Graph Neural Network for Food Recommendation.
Foods. 2024 Jul 5;13(13):2144. doi: 10.3390/foods13132144.
3
Recipe Recommendation With Hierarchical Graph Attention Network.
Front Big Data. 2022 Jan 12;4:778417. doi: 10.3389/fdata.2021.778417. eCollection 2021.
4
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation.
Entropy (Basel). 2021 Nov 12;23(11):1500. doi: 10.3390/e23111500.
5
Knowledge-Aware Multispace Embedding Learning for Personalized Recommendation.
Sensors (Basel). 2022 Mar 12;22(6):2212. doi: 10.3390/s22062212.
7
FIRE: knowledge-enhanced recommendation with feature interaction and intent-aware attention networks.
Appl Intell (Dordr). 2022 Dec 7:1-21. doi: 10.1007/s10489-022-04300-x.
8
ExpGCN: Review-aware Graph Convolution Network for explainable recommendation.
Neural Netw. 2023 Jan;157:202-215. doi: 10.1016/j.neunet.2022.10.014. Epub 2022 Oct 22.
9
Iterative heterogeneous graph learning for knowledge graph-based recommendation.
Sci Rep. 2023 Apr 28;13(1):6987. doi: 10.1038/s41598-023-33984-5.
10
Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet.
PLoS One. 2021 May 14;16(5):e0251162. doi: 10.1371/journal.pone.0251162. eCollection 2021.

引用本文的文献

1
Applications of Artificial Intelligence in Food Industry.
Foods. 2025 Apr 1;14(7):1241. doi: 10.3390/foods14071241.
2
Nutrition-Related Knowledge Graph Neural Network for Food Recommendation.
Foods. 2024 Jul 5;13(13):2144. doi: 10.3390/foods13132144.
3
AI nutrition recommendation using a deep generative model and ChatGPT.
Sci Rep. 2024 Jun 25;14(1):14620. doi: 10.1038/s41598-024-65438-x.
4
Developing a Chatbot to Support Individuals With Neurodevelopmental Disorders: Tutorial.
J Med Internet Res. 2024 Jun 18;26:e50182. doi: 10.2196/50182.
5
Review of visual analytics methods for food safety risks.
NPJ Sci Food. 2023 Sep 12;7(1):49. doi: 10.1038/s41538-023-00226-x.
6
Prediction and Visual Analysis of Food Safety Risk Based on TabNet-GRA.
Foods. 2023 Aug 18;12(16):3113. doi: 10.3390/foods12163113.

本文引用的文献

1
Applications of knowledge graphs for food science and industry.
Patterns (N Y). 2022 May 13;3(5):100484. doi: 10.1016/j.patter.2022.100484.
3
DIETOS: A dietary recommender system for chronic diseases monitoring and management.
Comput Methods Programs Biomed. 2018 Jan;153:93-104. doi: 10.1016/j.cmpb.2017.10.014. Epub 2017 Oct 12.
5
Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
6
Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial.
Lancet. 1990 Jul 21;336(8708):129-33. doi: 10.1016/0140-6736(90)91656-u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验