Suppr超能文献

手术时间:优化预测与因果分析。

Surgery duration: Optimized prediction and causality analysis.

机构信息

Bar-Ilan University, Ramat Gan, Israel.

I-Medata AI Center, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

出版信息

PLoS One. 2022 Aug 29;17(8):e0273831. doi: 10.1371/journal.pone.0273831. eCollection 2022.

Abstract

Accurate estimation of duration of surgery (DOS) can lead to cost-effective utilization of surgical staff and operating rooms and decrease patients' waiting time. In this study, we present a supervised DOS nonlinear regression prediction model whose accuracy outperforms earlier results. In addition, unlike previous studies, we identify the features that influence DOS prediction. Further, in difference from others, we study the causal relationship between the feature set and DOS. The feature sets used in prior studies included a subset of the features presented in this study. This study aimed to derive influential effectors of duration of surgery via optimized prediction and causality analysis. We implemented an array of machine learning algorithms and trained them on datasets comprising surgery-related data, to derive DOS prediction models. The datasets we acquired contain patient, surgical staff, and surgery features. The datasets comprised 23,293 surgery records of eight surgery types performed over a 10-year period in a public hospital. We have introduced new, unstudied features and combined them with features adopted from previous studies to generate a comprehensive feature set. We utilized feature importance methods to identify the influential features, and causal inference methods to identify the causal features. Our model demonstrates superior performance in comparison to DOS prediction models in the art. The performance of our DOS model in terms of the mean absolute error (MAE) was 14.9 minutes. The algorithm that derived the model with the best performance was the gradient boosted trees (GBT). We identified the 10 most influential features and the 10 most causal features. In addition, we showed that 40% of the influential features have a significant (p-value = 0.05) causal relationship with DOS. We developed a DOS prediction model whose accuracy is higher than that of prior models. This improvement is achieved via the introduction of a novel feature set on which the model was trained. Utilizing our prediction model, hospitals can improve the efficiency of surgery schedules, and by exploiting the identified causal relationship, can influence the DOS. Further, the feature importance methods we used can help explain the model's predictions.

摘要

准确估计手术持续时间(DOS)可以实现手术人员和手术室的成本效益利用,并减少患者的等待时间。在这项研究中,我们提出了一种监督的 DOS 非线性回归预测模型,其准确性优于早期的结果。此外,与之前的研究不同,我们确定了影响 DOS 预测的特征。此外,与其他人不同的是,我们研究了特征集与 DOS 之间的因果关系。之前的研究中使用的特征集包括本研究中提出的特征的子集。本研究旨在通过优化预测和因果分析得出手术持续时间的影响因素。我们实现了一系列机器学习算法,并在包含手术相关数据的数据集上对它们进行了训练,以得出 DOS 预测模型。我们获得的数据集包含患者、手术人员和手术特征。这些数据集包含 10 年间在一家公立医院进行的 8 种手术类型的 23293 例手术记录。我们引入了新的、未研究的特征,并将其与之前研究中采用的特征相结合,生成了一个全面的特征集。我们利用特征重要性方法来识别有影响的特征,并利用因果推理方法来识别因果特征。与艺术中的 DOS 预测模型相比,我们的模型表现出更好的性能。我们的 DOS 模型在平均绝对误差(MAE)方面的性能为 14.9 分钟。生成性能最佳模型的算法是梯度提升树(GBT)。我们确定了 10 个最有影响的特征和 10 个最有因果关系的特征。此外,我们还表明,40%的有影响的特征与 DOS 有显著的(p 值=0.05)因果关系。我们开发了一种 DOS 预测模型,其准确性高于之前的模型。这一改进是通过引入一个新的特征集来实现的,该模型是基于该特征集进行训练的。利用我们的预测模型,医院可以提高手术计划的效率,并通过利用确定的因果关系来影响 DOS。此外,我们使用的特征重要性方法可以帮助解释模型的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验