DISCo, University of Milano-Bicocca, viale Sarca 336, Milano 20126, Italy.
DISCo, University of Milano-Bicocca, viale Sarca 336, Milano 20126, Italy.
Int J Med Inform. 2021 Sep;153:104510. doi: 10.1016/j.ijmedinf.2021.104510. Epub 2021 Jun 2.
This editorial aims to contribute to the current debate about the quality of studies that apply machine learning (ML) methodologies to medical data to extract value from them and provide clinicians with viable and useful tools supporting everyday care practices. We propose a practical checklist to help authors to self assess the quality of their contribution and to help reviewers to recognize and appreciate high-quality medical ML studies by distinguishing them from the mere application of ML techniques to medical data.
本社论旨在为当前关于应用机器学习 (ML) 方法从医学数据中提取价值并为临床医生提供支持日常护理实践的可行有用工具的研究质量的争论做出贡献。我们提出了一个实用的清单,以帮助作者评估自己的贡献质量,并帮助评审员通过将 ML 技术应用于医学数据与高质量的医学 ML 研究区分开来,识别和欣赏高质量的医学 ML 研究。