Suppr超能文献

高级别浆液性卵巢癌的二元分类源于空间异质性。

Dualistic classification of high grade serous ovarian carcinoma has its root in spatial heterogeneity.

机构信息

Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080 Guangzhou, China.

Department of Pathology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080 Guangzhou, China.

出版信息

J Adv Res. 2023 Jun;48:213-225. doi: 10.1016/j.jare.2022.08.014. Epub 2022 Aug 28.

Abstract

INTRODUCTION

Widespread intra-peritoneal metastases is a main feature of high grade serous ovarian carcinoma (HGSOC). Recently, the extent of tumour heterogeneity was used to evaluate the cancer genomes among multi-regions in HGSOC. However, there is no consensus on the effect of tumour heterogeneity on the evolution of the tumour metastasis process in HGSOC.

OBJECTIVES

We performed whole-exome sequencing in multiple regions of matched primary and metastatic HGSOC specimens to reveal the genetic mechanisms of ovarian tumourigenesis and malignant progression.

METHODS

63 samples (including ovarian carcinoma, omentum metastasis, and normal tissues) were used. We analyzed the genomic heterogeneity, traced the subclone dissemination and establishment history and compared the different genetic characters of cancer evolutionary models in HGSOC.

RESULTS

We found that HGSOC had substantial intra-tumour heterogeneity (median 54.2, range 0 ∼ 106.7), high inter-patient heterogeneity (P < 0.001), but relatively limited intra-patient heterogeneity (P = 0.949). Two COSMIC mutational signatures were identified in HGSOCs: signature 3 was related to homologous recombination, and signature 1 was associated with aging. Two scenarios were identified by phylogenetic reconstruction in our study: 3 cases (33.3 %) showed star topology, and the other 6 cases (66.7 %) displayed tree topology. Compared with star topology group, more driver events were identified in tree topology group (P < 0.001), and occurred more frequently in early stage than in late stage of clonal evolution (P < 0.001). Moreover, compared with the star topology group, the tree topology group showed higher rate of intra-tumour heterogeneity (P = 0.045).

CONCLUSION

A dualistic classification model was proposed for the classification of HGSOC based on spatial heterogeneity, which may contribute to better managing patients and providing individual treatment for HGSOC patients.

摘要

介绍

广泛的腹腔内转移是高级别浆液性卵巢癌(HGSOC)的主要特征。最近,肿瘤异质性的程度被用于评估 HGSOC 中多区域的癌症基因组。然而,肿瘤异质性对 HGSOC 肿瘤转移过程进化的影响尚无共识。

目的

我们对匹配的原发性和转移性 HGSOC 标本的多个区域进行全外显子组测序,以揭示卵巢肿瘤发生和恶性进展的遗传机制。

方法

共使用 63 个样本(包括卵巢癌、大网膜转移和正常组织)。我们分析了基因组异质性,追踪了亚克隆的传播和建立历史,并比较了 HGSOC 中不同癌症进化模型的不同遗传特征。

结果

我们发现 HGSOC 具有大量的肿瘤内异质性(中位数为 54.2,范围为 0 至 106.7),高患者间异质性(P<0.001),但患者内异质性相对有限(P=0.949)。在 HGSOC 中鉴定出两个 COSMIC 突变特征:特征 3 与同源重组有关,特征 1 与衰老有关。通过系统发育重建,在我们的研究中确定了两种情况:3 例(33.3%)显示星状拓扑,其他 6 例(66.7%)显示树状拓扑。与星状拓扑组相比,树状拓扑组中鉴定出更多的驱动事件(P<0.001),并且在克隆进化的早期阶段比晚期阶段更频繁发生(P<0.001)。此外,与星状拓扑组相比,树状拓扑组的肿瘤内异质性更高(P=0.045)。

结论

基于空间异质性,提出了一种用于 HGSOC 的二元分类模型,这可能有助于更好地管理患者,并为 HGSOC 患者提供个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bdd/10248863/9221e2591f80/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验