Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
New York Genome Center, New York, NY, USA.
Nat Rev Genet. 2021 Jan;22(1):3-18. doi: 10.1038/s41576-020-0265-5. Epub 2020 Aug 17.
Cancer represents an evolutionary process through which growing malignant populations genetically diversify, leading to tumour progression, relapse and resistance to therapy. In addition to genetic diversity, the cell-to-cell variation that fuels evolutionary selection also manifests in cellular states, epigenetic profiles, spatial distributions and interactions with the microenvironment. Therefore, the study of cancer requires the integration of multiple heritable dimensions at the resolution of the single cell - the atomic unit of somatic evolution. In this Review, we discuss emerging analytic and experimental technologies for single-cell multi-omics that enable the capture and integration of multiple data modalities to inform the study of cancer evolution. These data show that cancer results from a complex interplay between genetic and non-genetic determinants of somatic evolution.
癌症代表了一个进化过程,在此过程中,不断生长的恶性肿瘤通过遗传多样化,导致肿瘤进展、复发和对治疗的耐药性。除了遗传多样性外,推动进化选择的细胞间变异也表现在细胞状态、表观遗传特征、空间分布以及与微环境的相互作用中。因此,癌症的研究需要在单细胞水平上整合多个可遗传的维度,单细胞是体细胞进化的基本单位。在这篇综述中,我们讨论了单细胞多组学的新兴分析和实验技术,这些技术能够捕获和整合多种数据模式,为癌症进化的研究提供信息。这些数据表明,癌症是遗传和非遗传因素共同作用的结果。