Suppr超能文献

深度学习图像分割揭示了雀形目鸟类紫外线反射率演化的模式。

Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds.

机构信息

Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP, UK.

出版信息

Nat Commun. 2022 Aug 29;13(1):5068. doi: 10.1038/s41467-022-32586-5.

Abstract

Ultraviolet colouration is thought to be an important form of signalling in many bird species, yet broad insights regarding the prevalence of ultraviolet plumage colouration and the factors promoting its evolution are currently lacking. In this paper, we develop a image segmentation pipeline based on deep learning that considerably outperforms classical (i.e. non deep learning) segmentation methods, and use this to extract accurate information on whole-body plumage colouration from photographs of >24,000 museum specimens covering >4500 species of passerine birds. Our results demonstrate that ultraviolet reflectance, particularly as a component of other colours, is widespread across the passerine radiation but is strongly phylogenetically conserved. We also find clear evidence in support of the role of light environment in promoting the evolution of ultraviolet plumage colouration, and a weak trend towards higher ultraviolet plumage reflectance among bird species with ultraviolet rather than violet-sensitive visual systems. Overall, our study provides important broad-scale insight into an enigmatic component of avian colouration, as well as demonstrating that deep learning has considerable promise for allowing new data to be brought to bear on long-standing questions in ecology and evolution.

摘要

紫外线着色被认为是许多鸟类物种中一种重要的信号形式,但目前缺乏关于紫外线羽毛颜色的普遍性以及促进其进化的因素的广泛了解。在本文中,我们开发了一种基于深度学习的图像分割管道,该管道的性能明显优于传统(即非深度学习)分割方法,并利用该方法从超过 24000 个博物馆标本的照片中提取出关于整个身体羽毛颜色的准确信息,这些标本涵盖了 4500 多种雀形目鸟类。我们的结果表明,紫外线反射率,特别是作为其他颜色的组成部分,在雀形目辐射中广泛存在,但在系统发育上却得到了强烈的保守。我们还提供了明确的证据,支持光环境在促进紫外线羽毛颜色进化中的作用,以及在具有紫外线而不是紫光敏感视觉系统的鸟类物种中,紫外线羽毛反射率较高的趋势。总的来说,我们的研究为鸟类颜色的一个神秘组成部分提供了重要的广泛见解,并表明深度学习在利用新数据解决生态学和进化中长期存在的问题方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff46/9424304/59967deda4b6/41467_2022_32586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验