Suppr超能文献

多维医学图像数据的自适应压缩与重建:一种用于提高图像质量的混合算法

Adaptive Compression and Reconstruction for Multidimensional Medical Image Data: A Hybrid Algorithm for Enhanced Image Quality.

作者信息

David Pauline Freeda, Kothandapani Suganya Devi, Pugalendhi Ganesh Kumar

机构信息

Department of Computer Science and Engineering, IFET College of Engineering, Villupuram, Tamil Nadu, India.

Department of Computer Science and Engineering, National Institute of Technology Silchar, Silchar, Assam, India.

出版信息

J Imaging Inform Med. 2024 Dec 20. doi: 10.1007/s10278-024-01353-x.

Abstract

Spatial regions within images typically hold greater priority over adjacent areas, especially in the context of medical images (MI) where minute details can have significant clinical implications. This research addresses the challenge of compressing medical image dimensions without compromising critical information by proposing an adaptive compression algorithm. The algorithm integrates a modified image enhancement module, clustering-based segmentation, and a variety of lossless and lossy compression techniques. Edge enhancement contrast limited adaptive histogram equalization (EE-CLAHE) and 2D adaptive anisotropic diffusion filter are employed to enhance and denoise the images, followed by adaptive expectation maximization clustering (AEMC) for segmentation into regions of interest (ROI) and non-ROI. The clustering process is optimized utilizing fuzzy c-means (FCM) and Otsu thresholding. Subsequently, distinct compression schemes are applied to ROI and non-ROI regions, such as Coiflet + Haar, Coiflet + Daubecheis, modified SPIHT Huffman, EZW, and SPIHT algorithms, to ensure effective storage and transmission while preserving diagnostic details. Experimental results demonstrate that the combination of the modified SPIHT Huffman algorithm for ROI and EZW for non-ROI yields superior reconstruction quality across various measures, enabling comprehensive analysis of multi-dimensional images from MRI, CT, and X-ray modalities.

摘要

图像中的空间区域通常比相邻区域具有更高的优先级,尤其是在医学图像(MI)的背景下,其中微小的细节可能具有重大的临床意义。本研究提出了一种自适应压缩算法,以应对在不损害关键信息的情况下压缩医学图像维度的挑战。该算法集成了改进的图像增强模块、基于聚类的分割以及各种无损和有损压缩技术。采用边缘增强对比度受限自适应直方图均衡化(EE-CLAHE)和二维自适应各向异性扩散滤波器对图像进行增强和去噪,然后通过自适应期望最大化聚类(AEMC)将其分割为感兴趣区域(ROI)和非ROI区域。利用模糊c均值(FCM)和大津阈值法对聚类过程进行优化。随后,将不同的压缩方案应用于ROI和非ROI区域,如Coiflet+Haar、Coiflet+Daubecheis、改进的SPIHT Huffman、EZW和SPIHT算法,以确保在保留诊断细节的同时进行有效的存储和传输。实验结果表明,针对ROI的改进SPIHT Huffman算法和针对非ROI的EZW算法相结合,在各种指标上均产生了卓越的重建质量,能够对来自MRI、CT和X射线模态的多维图像进行全面分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验