Suppr超能文献

COV-RadNet:一种用于从胸部X光和CT扫描中自动检测新冠病毒肺炎的深度卷积神经网络。

COV-RadNet: A Deep Convolutional Neural Network for Automatic Detection of COVID-19 from Chest X-Rays and CT Scans.

作者信息

Islam Md Khairul, Habiba Sultana Umme, Khan Tahsin Ahmed, Tasnim Farzana

机构信息

Khulna University of Engineering & Technology, Khulna, 9203, Khulna, Bangladesh.

International Islamic University Chittagong, Kumira, 4318, Chittagong, Bangladesh.

出版信息

Comput Methods Programs Biomed Update. 2022;2:100064. doi: 10.1016/j.cmpbup.2022.100064. Epub 2022 Aug 25.

Abstract

With the increase in severity of COVID-19 pandemic situation, the world is facing a critical fight to cope up with the impacts on human health, education and economy. The ongoing battle with the novel corona virus, is showing much priority to diagnose and provide rapid treatment to the patients. The rapid growth of COVID-19 has broken the healthcare system of the affected countries, creating a shortage in ICUs, test kits, ventilation support system. etc. This paper aims at finding an automatic COVID-19 detection approach which will assist the medical practitioners to diagnose the disease quickly and effectively. In this paper, a deep convolutional neural network, 'COV-RadNet' is proposed to detect COVID positive, viral pneumonia, lung opacity and normal, healthy people by analyzing their Chest Radiographic (X-ray and CT scans) images. Data augmentation technique is applied to balance the dataset 'COVID 19 Radiography Dataset' to make the classifier more robust to the classification task. We have applied transfer learning approach using four deep learning based models: VGG16, VGG19, ResNet152 and ResNext 101 to detect COVID-19 from chest X-ray images. We have achieved 97% classification accuracy using our proposed COV-RadNet model for COVID/Viral Pneumonia/Lungs Opacity/Normal, 99.5% accuracy to detect COVID/Viral Pneumonia/Normal and 99.72% accuracy to detect COVID and non-COVID people. Using chest CT scan images, we have found 99.25% accuracy to classify between COVID and non-COVID classes. Among the performance of the pre-trained models, ResNext 101 has shown the highest accuracy of 98.5% for multiclass classification (COVID, viral pneumonia, Lungs opacity and normal).

摘要

随着新冠疫情形势的加剧,世界正面临一场关键斗争,以应对其对人类健康、教育和经济的影响。与新型冠状病毒的这场持续战斗,将诊断和为患者提供快速治疗置于了高度优先地位。新冠疫情的迅速蔓延打破了受影响国家的医疗体系,造成了重症监护病房、检测试剂盒、通气支持系统等的短缺。本文旨在寻找一种自动检测新冠的方法,以协助医学从业者快速有效地诊断该疾病。本文提出了一种深度卷积神经网络“COV-RadNet”,通过分析胸部X光(X射线和CT扫描)图像来检测新冠阳性、病毒性肺炎、肺部模糊和正常健康人群。应用数据增强技术来平衡数据集“COVID 19射线照相数据集”,以使分类器在分类任务中更具鲁棒性。我们应用了基于四种深度学习模型的迁移学习方法:VGG16、VGG19、ResNet152和ResNext 101,从胸部X光图像中检测新冠。我们提出的COV-RadNet模型在新冠/病毒性肺炎/肺部模糊/正常分类上达到了97%的分类准确率,在检测新冠/病毒性肺炎/正常上达到了99.5%的准确率,在检测新冠和非新冠人群上达到了99.72%的准确率。使用胸部CT扫描图像,我们在新冠和非新冠类别分类中达到了99.25%的准确率。在预训练模型的性能中,ResNext 101在多类别分类(新冠、病毒性肺炎、肺部模糊和正常)中显示出最高的98.5%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afb/9404230/d56ca5b76548/gr8_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验