Suppr超能文献

基于融合动态范例金字塔特征提取和深度学习混合特征选择的自动化 COVID-19 检测。

An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning.

机构信息

Department of Software Engineering, College of Engineering, Firat University, Elazig, Turkey.

Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.

出版信息

Comput Biol Med. 2021 May;132:104356. doi: 10.1016/j.compbiomed.2021.104356. Epub 2021 Mar 27.

Abstract

The new coronavirus disease known as COVID-19 is currently a pandemic that is spread out the whole world. Several methods have been presented to detect COVID-19 disease. Computer vision methods have been widely utilized to detect COVID-19 by using chest X-ray and computed tomography (CT) images. This work introduces a model for the automatic detection of COVID-19 using CT images. A novel handcrafted feature generation technique and a hybrid feature selector are used together to achieve better performance. The primary goal of the proposed framework is to achieve a higher classification accuracy than convolutional neural networks (CNN) using handcrafted features of the CT images. In the proposed framework, there are four fundamental phases, which are preprocessing, fused dynamic sized exemplars based pyramid feature generation, ReliefF, and iterative neighborhood component analysis based feature selection and deep neural network classifier. In the preprocessing phase, CT images are converted into 2D matrices and resized to 256 × 256 sized images. The proposed feature generation network uses dynamic-sized exemplars and pyramid structures together. Two basic feature generation functions are used to extract statistical and textural features. The selected most informative features are forwarded to artificial neural networks (ANN) and deep neural network (DNN) for classification. ANN and DNN models achieved 94.10% and 95.84% classification accuracies respectively. The proposed fused feature generator and iterative hybrid feature selector achieved the best success rate, according to the results obtained by using CT images.

摘要

新型冠状病毒病(COVID-19)目前在全球范围内流行。已经提出了几种方法来检测 COVID-19 疾病。计算机视觉方法已广泛用于通过胸部 X 射线和计算机断层扫描(CT)图像来检测 COVID-19。这项工作提出了一种使用 CT 图像自动检测 COVID-19 的模型。一种新颖的手工特征生成技术和混合特征选择器一起使用,以获得更好的性能。所提出的框架的主要目标是使用 CT 图像的手工特征实现比卷积神经网络(CNN)更高的分类准确性。在所提出的框架中,有四个基本阶段,分别是预处理、融合动态大小示例的金字塔特征生成、 ReliefF 和基于迭代邻域成分分析的特征选择和深度神经网络分类器。在预处理阶段,将 CT 图像转换为 2D 矩阵,并调整大小为 256×256 大小的图像。所提出的特征生成网络共同使用动态大小示例和金字塔结构。使用两个基本的特征生成函数来提取统计和纹理特征。选择最具信息量的特征转发到人工神经网络(ANN)和深度神经网络(DNN)进行分类。ANN 和 DNN 模型分别实现了 94.10%和 95.84%的分类准确率。根据使用 CT 图像获得的结果,所提出的融合特征生成器和迭代混合特征选择器实现了最佳成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e235/7997855/4e8c329bf529/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验