Suppr超能文献

利用 X 射线图像的范例混合深度特征自动检测 COVID-19。

Automatic COVID-19 Detection Using Exemplar Hybrid Deep Features with X-ray Images.

机构信息

School of Management & Enterprise, University of Southern Queensland, Toowoomba 2550, Australia.

Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Int J Environ Res Public Health. 2021 Jul 29;18(15):8052. doi: 10.3390/ijerph18158052.

Abstract

COVID-19 and pneumonia detection using medical images is a topic of immense interest in medical and healthcare research. Various advanced medical imaging and machine learning techniques have been presented to detect these respiratory disorders accurately. In this work, we have proposed a novel COVID-19 detection system using an exemplar and hybrid fused deep feature generator with X-ray images. The proposed Exemplar COVID-19FclNet9 comprises three basic steps: exemplar deep feature generation, iterative feature selection and classification. The novelty of this work is the feature extraction using three pre-trained convolutional neural networks (CNNs) in the presented feature extraction phase. The common aspects of these pre-trained CNNs are that they have three fully connected layers, and these networks are AlexNet, VGG16 and VGG19. The fully connected layer of these networks is used to generate deep features using an exemplar structure, and a nine-feature generation method is obtained. The loss values of these feature extractors are computed, and the best three extractors are selected. The features of the top three fully connected features are merged. An iterative selector is used to select the most informative features. The chosen features are classified using a support vector machine (SVM) classifier. The proposed COVID-19FclNet9 applied nine deep feature extraction methods by using three deep networks together. The most appropriate deep feature generation model selection and iterative feature selection have been employed to utilise their advantages together. By using these techniques, the image classification ability of the used three deep networks has been improved. The presented model is developed using four X-ray image corpora (DB1, DB2, DB3 and DB4) with two, three and four classes. The proposed Exemplar COVID-19FclNet9 achieved a classification accuracy of 97.60%, 89.96%, 98.84% and 99.64% using the SVM classifier with 10-fold cross-validation for four datasets, respectively. Our developed Exemplar COVID-19FclNet9 model has achieved high classification accuracy for all four databases and may be deployed for clinical application.

摘要

使用医学图像检测 COVID-19 和肺炎是医学和医疗保健研究中非常关注的话题。已经提出了各种先进的医学成像和机器学习技术来准确检测这些呼吸系统疾病。在这项工作中,我们使用 X 射线图像提出了一种新颖的基于示例和混合融合深度特征生成器的 COVID-19 检测系统。所提出的示例 COVID-19FclNet9 由三个基本步骤组成:示例深度特征生成、迭代特征选择和分类。这项工作的新颖之处在于在提出的特征提取阶段使用了三个预训练卷积神经网络(CNN)进行特征提取。这些预训练 CNN 的共同之处在于它们都有三个全连接层,这些网络是 AlexNet、VGG16 和 VGG19。这些网络的全连接层用于使用示例结构生成深度特征,并获得九种特征生成方法。计算这些特征提取器的损失值,并选择最佳的三个提取器。合并这三个最佳的全连接特征的特征。使用迭代选择器选择最具信息量的特征。选择的特征使用支持向量机(SVM)分类器进行分类。COVID-19FclNet9 应用了九种深度特征提取方法,使用了三个深度网络。采用最合适的深度特征生成模型选择和迭代特征选择,以共同发挥它们的优势。通过使用这些技术,提高了所使用的三个深度网络的图像分类能力。所提出的模型是使用四个 X 射线图像语料库(DB1、DB2、DB3 和 DB4),使用两个、三个和四个类别开发的。使用 SVM 分类器和 10 倍交叉验证,分别为四个数据集获得了 97.60%、89.96%、98.84%和 99.64%的分类准确率。我们开发的 Exemplar COVID-19FclNet9 模型对所有四个数据库都达到了较高的分类准确率,可能适用于临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd35/8345793/b04a20d59ab2/ijerph-18-08052-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验