Suppr超能文献

放射组学在非小细胞肺癌患者 PD-L1 阻断治疗中有何作用?

What does radiomics do in PD-L1 blockade therapy of NSCLC patients?

机构信息

Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Thorac Cancer. 2022 Oct;13(19):2669-2680. doi: 10.1111/1759-7714.14620. Epub 2022 Aug 29.

Abstract

With the in-depth understanding of programmed cell death 1 ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC), PD-L1 has become a vital immunotherapy target and a significant biomarker. The clinical utility of detecting PD-L1 by immunohistochemistry or next-generation sequencing has been written into guidelines. However, the application of these methods is limited in some circumstances where the biopsy size is small or not accessible, or a dynamic monitor is needed. Radiomics can noninvasively, in real-time, and quantitatively analyze medical images to reflect deeper information about diseases. Since radiomics was proposed in 2012, it has been widely used in disease diagnosis and differential diagnosis, tumor staging and grading, gene and protein phenotype prediction, treatment plan decision-making, efficacy evaluation, and prognosis prediction. To explore the feasibility of the clinical application of radiomics in predicting PD-L1 expression, immunotherapy response, and long-term prognosis, we comprehensively reviewed and summarized recently published works in NSCLC. In conclusion, radiomics is expected to be a companion to the whole immunotherapy process.

摘要

随着对程序性死亡配体 1(PD-L1)在非小细胞肺癌(NSCLC)中深入了解,PD-L1 已成为重要的免疫治疗靶点和显著的生物标志物。免疫组化或下一代测序检测 PD-L1 的临床应用已写入指南。然而,在某些情况下,如活检组织体积小或无法获取,或需要动态监测时,这些方法的应用受到限制。放射组学可以非侵入性、实时和定量地分析医学图像,以反映有关疾病的更深层次信息。自 2012 年提出放射组学以来,它已被广泛应用于疾病诊断和鉴别诊断、肿瘤分期和分级、基因和蛋白表型预测、治疗方案决策、疗效评估和预后预测。为了探索放射组学在预测 PD-L1 表达、免疫治疗反应和长期预后中的临床应用的可行性,我们全面回顾和总结了 NSCLC 中最近发表的研究工作。总之,放射组学有望成为整个免疫治疗过程的伴侣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cede/9527165/9aacd4813b3f/TCA-13-2669-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验