Forouzannezhad Parisa, Maes Dominic, Hippe Daniel S, Thammasorn Phawis, Iranzad Reza, Han Jie, Duan Chunyan, Liu Xiao, Wang Shouyi, Chaovalitwongse W Art, Zeng Jing, Bowen Stephen R
Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Cancers (Basel). 2022 Feb 26;14(5):1228. doi: 10.3390/cancers14051228.
Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.
医学成像提供定量和空间信息,以评估非小细胞肺癌(NSCLC)患者治疗中的反应。在这些图像上高通量提取放射组学特征有可能对肿瘤进行非侵入性表型分析,并基于生存结果预测支持风险分层。相对于传统成像生物标志物或增量放射组学模型,NSCLC放化疗前和化疗期间不同成像模式和时间点的放射组学预后价值仍未明确。我们研究了多时间点放射组学特征的多任务学习(与单任务学习相对)相对于传统临床成像特征模型基准在改善生存结果预测方面的效用。前瞻性收集了45例不可切除NSCLC患者的生存结果,这些患者参加了风险适应性放化疗和可选巩固性PD-L1检查点阻断的FLARE-RT II期试验(NCT02773238)。在治疗前和治疗第3周进行了FDG-PET、CT和灌注SPECT成像,并从代谢肿瘤体积中提取了110个符合IBSI标准的基于形状/强度/纹理的放射组学特征。结果建模包括在多任务学习框架中使用逐分量梯度提升生存回归的融合拉普拉斯稀疏组套索。针对不同成像模式和时间点的多任务学习放射组学,在分层10倍交叉验证下评估测试性能。将多任务学习模型与传统临床成像和增量放射组学模型进行基准比较,并用一致性指数(c指数)和预测准确性指数(IPA)进行评估。在测试折叠中,FDG-PET放射组学对总生存的预后价值(c指数0.71 [0.67, 0.75])高于CT放射组学(c指数0.64 [0.60, 0.71])或灌注SPECT放射组学(c指数0.60 [0.57, 0.63])。治疗前/治疗中FDG-PET放射组学的多任务学习(c指数0.71 [0.67, 0.75])优于基准临床成像(c指数0.65 [0.59, 0.71])和FDG-PET增量放射组学(c指数0.52 [0.48, 0.58])模型。同样,多任务学习FDG-PET放射组学的IPA(30%)高于临床成像(26%)和增量放射组学(15%)模型。放射组学模型在不同体素重采样条件下表现一致。用于结果建模的多任务学习放射组学提供了一个利用纵向成像信息的临床决策支持平台。该框架在设计风险适应性癌症治疗策略时可以揭示不同成像模式和时间点的相对重要性。