Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Public Health Rep. 2022 Nov-Dec;137(2_suppl):83S-89S. doi: 10.1177/00333549221116361. Epub 2022 Aug 30.
Exposure notification (EN) supplements traditional contact tracing by using proximity sensors in smartphones to record close contact between persons. This ledger is used to alert persons of potential SARS-CoV-2 exposure, so they can quarantine until their infection status is determined. We describe a model that estimates the impact of EN implementation on reducing the spread of SARS-CoV-2 and on the workload of public health officials, in combination with other key public health interventions such as traditional contact tracing, face mask wearing, and testing.
We created an agent-based model, Simulated Automated Exposure Notification (SimAEN), to explore the effectiveness of EN to slow the spread of SARS-CoV-2. We varied selected simulation variables, such as population adoption of EN and EN detector sensitivity configurations, to illustrate the potential effects of EN. We executed 20 simulations with SimAEN for each scenario and derived results for each simulation.
When more sensitive versus more specific EN configurations were compared, the effective reproductive number, R, was minimally affected (a decrease <0.03). For scenarios with increasing levels of EN adoption, an increasing number of additional infected persons were identified through EN, and total infection counts in the simulated population decreased; R values for this scenario decreased with increasing EN adoption (a decrease of 0.1 to 0.2 depending on the scenario).
Estimates from SimAEN can help public health officials determine which levels of EN adoption in combination with other public health interventions can maximize prevention of COVID-19 while minimizing unnecessary quarantine in their jurisdiction.
接触者暴露通知(EN)利用智能手机中的接近传感器记录人与人之间的密切接触,以此补充传统的接触者追踪。该记录用于提醒潜在的 SARS-CoV-2 接触者进行隔离,直到确定其感染状况。我们描述了一种模型,该模型结合传统接触者追踪、佩戴口罩和检测等其他关键公共卫生干预措施,估计实施 EN 对减少 SARS-CoV-2 传播和公共卫生官员工作量的影响。
我们创建了一个基于代理的模型,即模拟自动接触者通知(SimAEN),以探索 EN 减缓 SARS-CoV-2 传播的有效性。我们改变了一些选定的模拟变量,如 EN 的人口采用率和 EN 探测器灵敏度配置,以说明 EN 的潜在影响。我们为每个场景使用 SimAEN 执行了 20 次模拟,并为每个模拟得出了结果。
与更敏感的 EN 配置相比,当比较更具体的 EN 配置时,有效繁殖数 R 受影响最小(减少<0.03)。对于采用率不断增加的场景,通过 EN 发现了越来越多的额外感染病例,模拟人群中的总感染病例数减少;对于这种情况,R 值随着 EN 采用率的增加而降低(根据场景的不同,减少 0.1 到 0.2)。
SimAEN 的估计可以帮助公共卫生官员确定在其管辖范围内,与其他公共卫生干预措施相结合,采用何种水平的 EN 可以最大限度地预防 COVID-19,同时最小化不必要的隔离。