Suppr超能文献

利用 SimAEN 评估 COVID-19 接触者通知的有效性:一款专为公共卫生决策设计的模拟工具。

Evaluating COVID-19 Exposure Notification Effectiveness With SimAEN: A Simulation Tool Designed for Public Health Decision Making.

机构信息

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.

COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

Public Health Rep. 2022 Nov-Dec;137(2_suppl):83S-89S. doi: 10.1177/00333549221116361. Epub 2022 Aug 30.

Abstract

OBJECTIVES

Exposure notification (EN) supplements traditional contact tracing by using proximity sensors in smartphones to record close contact between persons. This ledger is used to alert persons of potential SARS-CoV-2 exposure, so they can quarantine until their infection status is determined. We describe a model that estimates the impact of EN implementation on reducing the spread of SARS-CoV-2 and on the workload of public health officials, in combination with other key public health interventions such as traditional contact tracing, face mask wearing, and testing.

METHODS

We created an agent-based model, Simulated Automated Exposure Notification (SimAEN), to explore the effectiveness of EN to slow the spread of SARS-CoV-2. We varied selected simulation variables, such as population adoption of EN and EN detector sensitivity configurations, to illustrate the potential effects of EN. We executed 20 simulations with SimAEN for each scenario and derived results for each simulation.

RESULTS

When more sensitive versus more specific EN configurations were compared, the effective reproductive number, R, was minimally affected (a decrease <0.03). For scenarios with increasing levels of EN adoption, an increasing number of additional infected persons were identified through EN, and total infection counts in the simulated population decreased; R values for this scenario decreased with increasing EN adoption (a decrease of 0.1 to 0.2 depending on the scenario).

CONCLUSIONS

Estimates from SimAEN can help public health officials determine which levels of EN adoption in combination with other public health interventions can maximize prevention of COVID-19 while minimizing unnecessary quarantine in their jurisdiction.

摘要

目的

接触者暴露通知(EN)利用智能手机中的接近传感器记录人与人之间的密切接触,以此补充传统的接触者追踪。该记录用于提醒潜在的 SARS-CoV-2 接触者进行隔离,直到确定其感染状况。我们描述了一种模型,该模型结合传统接触者追踪、佩戴口罩和检测等其他关键公共卫生干预措施,估计实施 EN 对减少 SARS-CoV-2 传播和公共卫生官员工作量的影响。

方法

我们创建了一个基于代理的模型,即模拟自动接触者通知(SimAEN),以探索 EN 减缓 SARS-CoV-2 传播的有效性。我们改变了一些选定的模拟变量,如 EN 的人口采用率和 EN 探测器灵敏度配置,以说明 EN 的潜在影响。我们为每个场景使用 SimAEN 执行了 20 次模拟,并为每个模拟得出了结果。

结果

与更敏感的 EN 配置相比,当比较更具体的 EN 配置时,有效繁殖数 R 受影响最小(减少<0.03)。对于采用率不断增加的场景,通过 EN 发现了越来越多的额外感染病例,模拟人群中的总感染病例数减少;对于这种情况,R 值随着 EN 采用率的增加而降低(根据场景的不同,减少 0.1 到 0.2)。

结论

SimAEN 的估计可以帮助公共卫生官员确定在其管辖范围内,与其他公共卫生干预措施相结合,采用何种水平的 EN 可以最大限度地预防 COVID-19,同时最小化不必要的隔离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663f/9679931/59d095b0ffe2/10.1177_00333549221116361-fig1.jpg

相似文献

引用本文的文献

1
Innovative Approaches to COVID-19 Case Investigation and Contact Tracing.新冠疫情病例调查与接触者追踪的创新方法
Public Health Rep. 2022 Nov-Dec;137(2_suppl):5S-10S. doi: 10.1177/00333549221120454. Epub 2022 Sep 16.

本文引用的文献

4
The epidemiological impact of the NHS COVID-19 app.NHS COVID-19 应用程序的流行病学影响。
Nature. 2021 Jun;594(7863):408-412. doi: 10.1038/s41586-021-03606-z. Epub 2021 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验