Suppr超能文献

前列腺癌幸存者对为有限图表阅读能力设计的患者报告结局的可视化时间线的理解、实用性和偏好:米尺和表情符号优于漫画。

Comprehension, utility, and preferences of prostate cancer survivors for visual timelines of patient-reported outcomes co-designed for limited graph literacy: meters and emojis over comics.

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.

Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, Washington, USA.

出版信息

J Am Med Inform Assoc. 2022 Oct 7;29(11):1838-1846. doi: 10.1093/jamia/ocac148.

Abstract

OBJECTIVE

Visual timelines of patient-reported outcomes (PRO) can help prostate cancer survivors manage longitudinal data, compare with population averages, and consider future trajectories. PRO visualizations are most effective when designed with deliberate consideration of users. Yet, graph literacy is often overlooked as a design constraint, particularly when users with limited graph literacy are not engaged in their development. We conducted user testing to assess comprehension, utility, and preference of longitudinal PRO visualizations designed for prostate cancer survivors with limited literacy.

MATERIALS AND METHODS

Building upon our prior work co-designing longitudinal PRO visualizations with survivors, we engaged 18 prostate cancer survivors in a user study to assess 4 prototypes: Meter, Words, Comic, and Emoji. During remote sessions, we collected data on prototype comprehension (gist and verbatim), utility, and preference.

RESULTS

Participants were aged 61-77 (M = 69), of whom half were African American. The majority of participants had less than a college degree (95%), had inadequate health literacy (78%), and low graph literacy (89%). Among the 4 prototypes, Meter had the best gist comprehension and was preferred. Emoji was also preferred, had the highest verbatim comprehension, and highest rated utility, including helpfulness, confidence, and satisfaction. Meter and Words both rated mid-range for utility, and Words scored lower than Emoji and Meter for comprehension. Comic had the poorest comprehension, lowest utility, and was least preferred.

DISCUSSION

Findings identify design considerations for PRO visualizations, contributing to the knowledge base for visualization best practices. We describe our process to meaningfully engage patients from diverse and hard-to-reach groups for remote user testing, an important endeavor for health equity in biomedical informatics.

CONCLUSION

Graph literacy is an important design consideration for PRO visualizations. Biomedical informatics researchers should be intentional in understanding user needs by involving diverse and representative individuals during development.

摘要

目的

患者报告结局(PRO)的可视化时间线有助于前列腺癌幸存者管理纵向数据,与人群平均值进行比较,并考虑未来的轨迹。当 PRO 可视化设计考虑到用户的需求时,其效果最佳。然而,在设计时通常会忽略图表素养,特别是当有限图表素养的用户未参与其开发时。我们进行了用户测试,以评估针对低文化素养的前列腺癌幸存者设计的纵向 PRO 可视化的理解、实用性和偏好。

材料与方法

基于我们与幸存者共同设计纵向 PRO 可视化的前期工作,我们邀请了 18 名前列腺癌幸存者参与用户研究,以评估 4 个原型:Meter、Words、Comic 和 Emoji。在远程会议期间,我们收集了有关原型理解(要点和逐字)、实用性和偏好的数据。

结果

参与者的年龄为 61-77 岁(M=69),其中一半是非洲裔美国人。大多数参与者的受教育程度低于大学(95%),健康素养不足(78%),图表素养低(89%)。在这 4 个原型中,Meter 的要点理解最好,也最受欢迎。Emoji 也很受欢迎,具有最高的逐字理解,并且实用性评分最高,包括有用性、信心和满意度。Meter 和 Words 的实用性评分都居中,而 Words 的理解得分低于 Emoji 和 Meter。Comic 的理解得分最差,实用性评分最低,也最不受欢迎。

讨论

研究结果确定了 PRO 可视化的设计考虑因素,为可视化最佳实践知识库做出了贡献。我们描述了我们的过程,即通过远程用户测试有意义地参与来自不同和难以接触的群体的患者,这是生物医学信息学中健康公平的重要努力。

结论

图表素养是 PRO 可视化的重要设计考虑因素。生物医学信息学研究人员应该在开发过程中通过让不同和有代表性的个人参与,有意了解用户的需求。

相似文献

本文引用的文献

1
The Science of Visual Data Communication: What Works.视觉数据通信科学:有效方法。
Psychol Sci Public Interest. 2021 Dec;22(3):110-161. doi: 10.1177/15291006211051956.
6
Loneliness and social isolation during the COVID-19 pandemic.新冠疫情期间的孤独与社会隔离
Int Psychogeriatr. 2020 Oct;32(10):1217-1220. doi: 10.1017/S1041610220000988. Epub 2020 May 26.
9
A Systematic Review of Patient-Facing Visualizations of Personal Health Data.个人健康数据患者可视化的系统评价
Appl Clin Inform. 2019 Aug;10(4):751-770. doi: 10.1055/s-0039-1697592. Epub 2019 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验