Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K.
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, U.S.A.
Biochem J. 2022 Sep 30;479(18):1941-1965. doi: 10.1042/BCJ20220308.
Leucine-rich-repeat-kinase 1 (LRRK1) and its homolog LRRK2 are multidomain kinases possessing a ROC-CORA-CORB containing GTPase domain and phosphorylate distinct Rab proteins. LRRK1 loss of function mutations cause the bone disorder osteosclerotic metaphyseal dysplasia, whereas LRRK2 missense mutations that enhance kinase activity cause Parkinson's disease. Previous work suggested that LRRK1 but not LRRK2, is activated via a Protein Kinase C (PKC)-dependent mechanism. Here we demonstrate that phosphorylation and activation of LRRK1 in HEK293 cells is blocked by PKC inhibitors including LXS-196 (Darovasertib), a compound that has entered clinical trials. We show multiple PKC isoforms phosphorylate and activate recombinant LRRK1 in a manner reversed by phosphatase treatment. PKCα unexpectedly does not activate LRRK1 by phosphorylating the kinase domain, but instead phosphorylates a cluster of conserved residues (Ser1064, Ser1074 and Thr1075) located within a region of the CORB domain of the GTPase domain. These residues are positioned at the equivalent region of the LRRK2 DK helix reported to stabilize the kinase domain αC-helix in the active conformation. Thr1075 represents an optimal PKC site phosphorylation motif and its mutation to Ala, blocked PKC-mediated activation of LRRK1. A triple Glu mutation of Ser1064/Ser1074/Thr1075 to mimic phosphorylation, enhanced LRRK1 kinase activity ∼3-fold. From analysis of available structures, we postulate that phosphorylation of Ser1064, Ser1074 and Thr1075 activates LRRK1 by promoting interaction and stabilization of the αC-helix on the kinase domain. This study provides new fundamental insights into the mechanism controlling LRRK1 activity and reveals a novel unexpected activation mechanism.
富含亮氨酸重复激酶 1(LRRK1)及其同源物 LRRK2 是具有 ROC-CORA-CORB 结构域的多结构域激酶,该结构域包含 GTPase 结构域,并磷酸化不同的 Rab 蛋白。LRRK1 功能丧失突变导致骨代谢疾病骨硬化性干骺端发育不良,而增强激酶活性的 LRRK2 错义突变导致帕金森病。先前的工作表明,LRRK1 而不是 LRRK2 通过蛋白激酶 C(PKC)依赖性机制激活。在这里,我们证明了 PKC 抑制剂(包括已进入临床试验的化合物 LXS-196(Darovasertib))可阻断 HEK293 细胞中 LRRK1 的磷酸化和激活。我们显示多个 PKC 同工型以磷酸酶处理可逆转的方式磷酸化和激活重组 LRRK1。PKCα 出乎意料地没有通过磷酸化激酶结构域来激活 LRRK1,而是磷酸化位于 GTPase 结构域 CORB 结构域内的保守残基(Ser1064、Ser1074 和 Thr1075)簇。这些残基位于 LRRK2 DK 螺旋的等效区域,该区域报告说可稳定激酶结构域αC-螺旋处于活性构象。Thr1075 代表一个最优的 PKC 位点磷酸化模体,其突变为 Ala 可阻断 PKC 介导的 LRRK1 激活。Ser1064/Ser1074/Thr1075 的三重 Glu 突变模拟磷酸化,可将 LRRK1 激酶活性增强约 3 倍。通过对现有结构的分析,我们推测 Ser1064、Ser1074 和 Thr1075 的磷酸化通过促进激酶结构域上αC-螺旋的相互作用和稳定来激活 LRRK1。这项研究为控制 LRRK1 活性的机制提供了新的基本见解,并揭示了一种新的意外激活机制。