Schwaiger Lorenz, Csarman Florian, Chang Hucheng, Golten Ole, Eijsink Vincent G H, Ludwig Roland
Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway.
ACS Catal. 2024 Jan 10;14(2):1205-1219. doi: 10.1021/acscatal.3c05194. eCollection 2024 Jan 19.
Biological conversion of plant biomass depends on peroxygenases and peroxidases acting on insoluble polysaccharides and lignin. Among these are cellulose- and hemicellulose-degrading lytic polysaccharide monooxygenases (LPMOs), which have revolutionized our concept of biomass degradation. Major obstacles limiting mechanistic and functional understanding of these unique peroxygenases are their complex and insoluble substrates and the hard-to-measure HO consumption, resulting in the lack of suitable kinetic assays. We report a versatile and robust electrochemical method for real-time monitoring and kinetic characterization of LPMOs and other HO-dependent interfacial enzymes based on a rotating disc electrode for the sensitive and selective quantitation of HO at biologically relevant concentrations. The HO sensor works in suspensions of insoluble substrates as well as in homogeneous solutions. Our characterization of multiple LPMOs provides unprecedented insights into the substrate specificity, kinetics, and stability of these enzymes. High turnover and total turnover numbers demonstrate that LPMOs are fast and durable biocatalysts.
植物生物质的生物转化依赖于作用于不溶性多糖和木质素的过氧酶和过氧化物酶。其中包括降解纤维素和半纤维素的溶菌多糖单加氧酶(LPMOs),它们彻底改变了我们对生物质降解的概念。限制对这些独特过氧酶进行机理和功能理解的主要障碍是其复杂且不溶性的底物以及难以测量的HO消耗,导致缺乏合适的动力学测定方法。我们报告了一种通用且强大的电化学方法,用于基于旋转圆盘电极对LPMOs和其他依赖HO的界面酶进行实时监测和动力学表征,以灵敏且选择性地定量生物相关浓度的HO。该HO传感器可在不溶性底物悬浮液以及均相溶液中工作。我们对多种LPMOs的表征为这些酶的底物特异性、动力学和稳定性提供了前所未有的见解。高周转数和总周转数表明LPMOs是快速且耐用的生物催化剂。